

ComponentOne

DataGrid for Silverlight

Copyright 2011 ComponentOne LLC. All rights reserved.

Corporate Headquarters
ComponentOne LLC
201 South Highland Avenue
3rd Floor

Pittsburgh, PA 15206 ∙ USA

Internet: info@ComponentOne.com

Web site: http://www.componentone.com

Sales

E-mail: sales@componentone.com

Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of ComponentOne LLC. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the original CD (or diskettes) are free from defects in material and workmanship, assuming
normal use, for a period of 90 days from the date of purchase. If a defect occurs during this time, you may return the defective
CD (or disk) to ComponentOne, along with a dated proof of purchase, and ComponentOne will replace it at no charge. After

90 days, you can obtain a replacement for a defective CD (or disk) by sending it and a check for $25 (to cover postage and
handling) to ComponentOne.

Except for the express warranty of the original CD (or disks) set forth here, ComponentOne makes no other warranties, express
or implied. Every attempt has been made to ensure that the information contained in this manual is correct as of the time it was

written. We are not responsible for any errors or omissions. ComponentOne’s liability is limited to the amount you paid for the
product. ComponentOne is not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not permitted to make

copies for the use of anyone else. We put a lot of time and effort into creating this product, and we appreciate your support in
seeing that it is used by licensed users only.

This manual was produced using ComponentOne Doc-To-Help™.

mailto:info@ComponentOne.com
http://www.componentone.com/
http://www.doctohelp.com/

 iii

Table of Contents

ComponentOne DataGrid for Silverlight Overview ..7

SilverlightSilverlightSilverlightSilverlightSilverlightSilverlightSilverlightSilverlightSilverlightSilverligh

tSilverlightInstalling DataGrid for Silverlight ... 7

DataGrid for Silverlight Setup Files ... 7

System Requirements ... 8

Installing Demonstration Versions ... 8

Uninstalling Studio for Silverlight .. 8

End-User License Agreement .. 8

Licensing FAQs ... 8

What is Licensing?.. 8

How does Licensing Work?.. 8

Common Scenarios .. 9

Troubleshooting.. 11

Studio for Silverlight Licensing .. 13

Technical Support .. 15

Redistributable Files ... 15

About this Documentation... 16

XAML and XAML Namespaces ... 16

Introduction to Silverlight .. 19

Silverlight Resources .. 19

Creating a New Silverlight Project ... 20

Using Templates ... 22

Preparing Your Enterprise Environment ... 30

Theming ... 30

Available Themes ... 30

Custom Themes .. 34

Included XAML Files .. 34

Implicit and Explicit Styles ... 37

Applying Themes to Controls .. 38

Applying Themes to an Application .. 40

ComponentOne ClearStyle Technology... 42

iv

Key Features .. 45

DataGrid for Silverlight Quick Start ... 46

Step 1 of 4: Creating a Silverlight Application ... 46

Step 2 of 4: Binding the Grid to a Data Source .. 47

Step 3 of 4: Customizing the Grid's Appearance and Behavior ... 50

Step 4 of 4: Running the Grid Application .. 51

Working with DataGrid for Silverlight ... 57

Class Hierarchy .. 57

Data Binding .. 57

WCF RIA Services Data Binding .. 58

Defining Columns .. 59

Generating Columns .. 59

Column Types .. 59

Explicitly Defining Columns .. 60

Customizing Automatically Generated Columns .. 62

Creating Custom Columns ... 64

Customizing Column Cell Content .. 64

Adding Properties to a Custom Column .. 66

Creating Custom Rows .. 67

Customizing Row Cell Content ... 67

Adding a Custom Row to the Data Grid ... 70

Adding Row Details ... 72

Filtering the Grid ... 72

Basic Column Filtering ... 72

Filter Row Filtering .. 73

Full Text Grid Filtering .. 73

Advanced Filtering ... 74

Column Filter List .. 74

Tab Filter List ... 75

Summarizing the Grid.. 75

Localizing the Application ... 76

Adding Resource Files.. 76

Adding Supported Cultures .. 77

Setting the Current Culture .. 78

Enabling or Disabling End User Interaction .. 78

Setting Selection Mode .. 79

 v

Locking the Grid .. 80

Deferred and Real Time Scrolling.. 80

Paging Grid Data ... 80

DataGrid for Silverlight's Appearance .. 81

C1DataGrid Themes .. 82

Editing Styles ... 84

Table Formatting Options .. 85

Setting Row and Column Header Visibility ... 85

Setting Grid Line Visibility ... 85

Setting New Row Visibility .. 85

Setting Vertical and Horizontal Scrollbar Visibility ... 86

Setting Row Details Visibility... 86

C1DataGrid Brushes .. 86

C1DataGrid ClearStyle .. 87

C1DataGrid Template Parts .. 89

RowDetailsTemplate ... 90

Run-time Interaction .. 90

Keyboard and Mouse Navigation .. 91

Keyboard Navigation ... 91

Mouse Navigation .. 92

Multiple Row Selection .. 93

Custom Keyboard Navigation .. 93

Resizing Columns and Rows ... 94

Reordering Columns .. 95

Filtering Columns .. 95

Sorting Columns .. 97

Grouping Columns .. 98

Freezing Columns .. 100

Editing Cells ... 101

Adding Rows to the Grid ... 102

DataGrid for Silverlight Tutorials .. 105

Binding the Grid to a Web Service .. 105

Step 1 of 3: Creating the User Interface .. 105

Step 2 of 3: Adding a Database and Web Service .. 106

Step 3 of 3: Connecting the Web Service ... 109

Binding the Grid to an RSS Feed ... 112

vi

Creating a Master/Detail View .. 115

Step 1 of 3: Setting up the Master/Detail Grid .. 115

Step 2 of 3: Adding a Data Source to the Project ... 116

Step 3 of 3: Setting up Row Details .. 117

Localizing the Grid .. 119

Step 1 of 3: Setting up the Localized Grid .. 119

Step 2 of 3: Adding a Resource File ... 122

Step 3 of 3: Setting the Culture ... 124

Binding the Grid to a WCF RIA Services Data Source ... 126

Step 1 of 3: Creating the Application and Adding the Data Source ... 126

Step 2 of 3: Adding the C1DataGrid control.. 127

Step 3 of 3: Running the Application ... 133

Implementing Stealth Paging ... 135

Step 1 of 3: Creating the User Interface .. 135

Step 2 of 3: Adding a Web Service ... 137

Step 3 of 3: Connecting the Web Service and Adding Stealth Paging ... 140

DataGrid for Silverlight Task-Based Help .. 144

Creating a DataGrid... 144

Controlling Grid Interaction .. 146

Enabling Grouping in the Grid .. 146

Showing the Grouping Area... 147

Disabling Column Reordering ... 148

Disabling Column and Row Resizing .. 148

Disabling Column Filtering .. 149

Disabling Column Sorting .. 149

Enabling Column Freezing .. 150

Freezing Grid Rows ... 151

Disabling Cell Editing .. 151

Disabling Adding Rows.. 152

Disabling Row Details Toggling .. 153

Customizing Grid Appearance .. 153

Changing the Grid's Background and Foreground Color .. 153

Removing the Grid's Alternating Row Colors ... 155

Changing the Grid's Mouse Hover Style .. 156

Changing the Grid's Font Style .. 157

 7

ComponentOne DataGrid for Silverlight

Overview
Add advanced data visualization to your Silverlight applications with

ComponentOne DataGrid™ for Silverlight. The robust data-bound

C1DataGrid control makes it easy to display, edit, and analyze tabular
data in Silverlight applications.

 Getting Started

Get started with the
following topics:

- Key Features (page 45)

- Quick Start (page 46)

- Task-Basked Help (page
144)

SilverlightSilverlightSilverlightSilverlightSilverlightSilverlightSilverlig
htSilverlightSilverlightSilverlightSilverlightInstalling DataGrid for
Silverlight
The following sections provide helpful information on installing ComponentOne DataGrid for Silverlight.

DataGrid for Silverlight Setup Files

The ComponentOne Studio for Silverlight installation program will create the following directory: C:\Program

Files\ComponentOne\Studio for Silverlight 4.0. This directory contains the following subdirectories:

Bin Contains copies of ComponentOne binaries (DLLs, EXEs, design-time assemblies).

Help Contains documentation for all Studio components and other useful resources including
XAML files.

Samples

Samples for the product are installed in the ComponentOne Samples folder by default. The path of the

ComponentOne Samples directory is slightly different on Windows XP and Windows Vista/Windows 7 machines:

Windows XP path: C:\Documents and Settings\<username>\My Documents\ComponentOne Samples\Studio
for Silverlight 4.0

Windows Vista and Windows 7 path: C:\Users\<username>\Documents\ComponentOne Samples\Studio for
Silverlight 4.0

System Requirements

System requirements for ComponentOne Studio for Silverlight include the following:

 Microsoft Silverlight 4.0 or later

8

 Microsoft Visual Studio 2008 or later

Installing Demonstration Versions

If you wish to try ComponentOne Studio for Silverlight and do not have a serial number, follow the steps through
the installation wizard and use the default serial number.

The only difference between unregistered (demonstration) and registered (purchased) versions of our products is
that the registered version will stamp every application you compile so a ComponentOne banner will not appear
when your users run the applications.

Uninstalling Studio for Silverlight

To uninstall ComponentOne Studio for Silverlight:

1. Open the Control Panel and select Add or Remove Programs (XP) or Programs and Features
(Windows 7/Vista).

2. Select ComponentOne Studio for Silverlight 4.0 and click the Remove button.

3. Click Yes to remove the program.

End-User License Agreement
All of the ComponentOne licensing information, including the ComponentOne end-user license agreements,
frequently asked licensing questions, and the ComponentOne licensing model, is available online at
http://www.componentone.com/SuperPages/Licensing/.

Licensing FAQs
This section describes the main technical aspects of licensing. It may help the user to understand and resolve
licensing problems he may experience when using ComponentOne .NET and ASP.NET products.

What is Licensing?

Licensing is a mechanism used to protect intellectual property by ensuring that users are authorized to use software
products.

Licensing is not only used to prevent illegal distribution of software products. Many software vendors, including
ComponentOne, use licensing to allow potential users to test products before they decide to purchase them.

Without licensing, this type of distribution would not be practical for the vendor or convenient for the user.
Vendors would either have to distribute evaluation software with limited functionality, or shift the burden of
managing software licenses to customers, who could easily forget that the software being used is an evaluation
version and has not been purchased.

How does Licensing Work?

ComponentOne uses a licensing model based on the standard set by Microsoft, which works with all types of
components.

Note: The Compact Framework components use a slightly different mechanism for run-time licensing than the

other ComponentOne components due to platform differences.

When a user decides to purchase a product, he receives an installation program and a Serial Number. During the
installation process, the user is prompted for the serial number that is saved on the system. (Users can also enter

the serial number by clicking the License button on the About Box of any ComponentOne product, if available, or
by rerunning the installation and entering the serial number in the licensing dialog box.)

http://www.componentone.com/SuperPages/Licensing/

 9

When a licensed component is added to a form or Web page, Visual Studio obtains version and licensing
information from the newly created component. When queried by Visual Studio, the component looks for
licensing information stored in the system and generates a run-time license and version information, which Visual
Studio saves in the following two files:

 An assembly resource file which contains the actual run-time license.

 A "licenses.licx" file that contains the licensed component strong name and version information.

These files are automatically added to the project.

In WinForms and ASP.NET 1.x applications, the run-time license is stored as an embedded resource in the
assembly hosting the component or control by Visual Studio. In ASP.NET 2.x applications, the run-time license

may also be stored as an embedded resource in the App_Licenses.dll assembly, which is used to store all run-time

licenses for all components directly hosted by WebForms in the application. Thus, the App_licenses.dll must
always be deployed with the application.

The licenses.licx file is a simple text file that contains strong names and version information for each of the
licensed components used in the application. Whenever Visual Studio is called upon to rebuild the application

resources, this file is read and used as a list of components to query for run-time licenses to be embedded in the
appropriate assembly resource. Note that editing or adding an appropriate line to this file can force Visual Studio
to add run-time licenses of other controls as well.

Note that the licenses.licx file is usually not shown in the Solution Explorer; it appears if you press the Show All

Files button in the Solution Explorer's Toolbox or, from Visual Studio's main menu, select Show All Files on the

Project menu.

Later, when the component is created at run time, it obtains the run-time license from the appropriate assembly
resource that was created at design time and can decide whether to simply accept the run-time license, to throw an
exception and fail altogether, or to display some information reminding the user that the software has not been
licensed.

All ComponentOne products are designed to display licensing information if the product is not licensed. None will
throw licensing exceptions and prevent applications from running.

Common Scenarios

The following topics describe some of the licensing scenarios you may encounter.

Creating components at design time

This is the most common scenario and also the simplest: the user adds one or more controls to the form, the

licensing information is stored in the licenses.licx file, and the component works.

Note that the mechanism is exactly the same for Windows Forms and Web Forms (ASP.NET) projects.

Creating components at run time

This is also a fairly common scenario. You do not need an instance of the component on the form, but would like
to create one or more instances at run time.

In this case, the project will not contain a licenses.licx file (or the file will not contain an appropriate run-time
license for the component) and therefore licensing will fail.

To fix this problem, add an instance of the component to a form in the project. This will create the licenses.licx file

and things will then work as expected. (The component can be removed from the form after the licenses.licx file
has been created).

Adding an instance of the component to a form, then removing that component, is just a simple way of adding a

line with the component strong name to the licenses.licx file. If desired, you can do this manually using notepad
or Visual Studio itself by opening the file and adding the text. When Visual Studio recreates the application
resources, the component will be queried and its run-time license added to the appropriate assembly resource.

10

Inheriting from licensed components

If a component that inherits from a licensed component is created, the licensing information to be stored in the
form is still needed. This can be done in two ways:

 Add a LicenseProvider attribute to the component.

This will mark the derived component class as licensed. When the component is added to a form, Visual

Studio will create and manage the licenses.licx file and the base class will handle the licensing process as
usual. No additional work is needed. For example:
 [LicenseProvider(typeof(LicenseProvider))]

 class MyGrid: C1.Win.C1FlexGrid.C1FlexGrid

 {

 // ...

 }

 Add an instance of the base component to the form.

This will embed the licensing information into the licenses.licx file as in the previous scenario and the

base component will find it and use it. As before, the extra instance can be deleted after the licenses.licx
file has been created.

Please note that ComponentOne licensing will not accept a run-time license for a derived control if the run-time
license is embedded in the same assembly as the derived class definition and the assembly is a DLL. This
restriction is necessary to prevent a derived control class assembly from being used in other applications without a
design-time license. If you create such an assembly, you will need to take one of the actions previously described
create a component at run time.

Using licensed components in console applications

When building console applications, there are no forms to add components to and therefore Visual Studio won't

create a licenses.licx file.

In these cases, create a temporary Windows Forms application and add all the desired licensed components to a

form. Then close the Windows Forms application and copy the licenses.licx file into the console application
project.

Make sure the licenses.licx file is configured as an embedded resource. To do this, right-click the licenses.licx file

in the Solution Explorer window and select Properties. In the Properties window, set the Build Action property to

Embedded Resource.

Using licensed components in Visual C++ applications

There is an issue in VC++ 2003 where the licenses.licx is ignored during the build process; therefore, the licensing

information is not included in VC++ applications.

To fix this problem, extra steps must be taken to compile the licensing resources and link them to the project. Note
the following:

1. Build the C++ project as usual. This should create an EXE file and also a licenses.licx file with licensing
information in it.

2. Copy the licenses.licx file from the application directory to the target folder (Debug or Release).

3. Copy the C1Lc.exe utility and the licensed DLLs to the target folder. (Don't use the standard lc.exe, it has

bugs.)

4. Use C1Lc.exe to compile the licenses.licx file. The command line should look like this:
c1lc /target:MyApp.exe /complist:licenses.licx /i:C1.Win.C1FlexGrid.dll

5. Link the licenses into the project. To do this, go back to Visual Studio, right-click the project, select

Properties, and go to the Linker/Command Line option. Enter the following:
/ASSEMBLYRESOURCE:Debug\MyApp.exe.licenses

 11

6. Rebuild the executable to include the licensing information in the application.

Using licensed components with automated testing products

Automated testing products that load assemblies dynamically may cause them to display license dialog boxes. This

is the expected behavior since the test application typically does not contain the necessary licensing information
and there is no easy way to add it.

This can be avoided by adding the string "C1CheckForDesignLicenseAtRuntime" to the AssemblyConfiguration
attribute of the assembly that contains or derives from ComponentOne controls. This attribute value directs the
ComponentOne controls to use design-time licenses at run time.

For example:
#if AUTOMATED_TESTING

 [AssemblyConfiguration("C1CheckForDesignLicenseAtRuntime")]

#endif

 public class MyDerivedControl : C1LicensedControl

 {

 // ...

 }

Note that the AssemblyConfiguration string may contain additional text before or after the given string, so the

AssemblyConfiguration attribute can be used for other purposes as well. For example:
[AssemblyConfiguration("C1CheckForDesignLicenseAtRuntime,BetaVersion")]

THIS METHOD SHOULD ONLY BE USED UNDER THE SCENARIO DESCRIBED. It requires a design-
time license to be installed on the testing machine. Distributing or installing the license on other computers is a

violation of the EULA.

Troubleshooting

We try very hard to make the licensing mechanism as unobtrusive as possible, but problems may occur for a
number of reasons.

Below is a description of the most common problems and their solutions.

I have a licensed version of a ComponentOne product but I still get the splash screen when I run my
project.

If this happens, there may be a problem with the licenses.licx file in the project. It either doesn't exist, contains
wrong information, or is not configured correctly.

First, try a full rebuild (Rebuild All from the Visual Studio Build menu). This will usually rebuild the correct

licensing resources.

If that fails follow these steps:

1. Open the project and go to the Solution Explorer window.

2. Click the Show All Files button on the top of the window.

3. Find the licenses.licx file and open it. If prompted, continue to open the file.

4. Change the version number of each component to the appropriate value. If the component does not

appear in the file, obtain the appropriate data from another licenses.licx file or follow the alternate
procedure following.

5. Save the file, then close the licenses.licx tab.

6. Rebuild the project using the Rebuild All option (not just Rebuild).

Alternatively, follow these steps:

1. Open the project and go to the Solution Explorer window.

12

2. Click the Show All Files button on the top of the window.

3. Find the licenses.licx file and delete it.

4. Close the project and reopen it.

5. Open the main form and add an instance of each licensed control.

6. Check the Solution Explorer window, there should be a licenses.licx file there.

7. Rebuild the project using the Rebuild All option (not just Rebuild).

For ASP.NET 2.x applications, follow these steps:

1. Open the project and go to the Solution Explorer window.

2. Find the licenses.licx file and right-click it.

3. Select the Rebuild Licenses option (this will rebuild the App_Licenses.licx file).

4. Rebuild the project using the Rebuild All option (not just Rebuild).

I have a licensed version of a ComponentOne product on my Web server but the components still
behave as unlicensed.

There is no need to install any licenses on machines used as servers and not used for development.

The components must be licensed on the development machine, therefore the licensing information will be saved
into the executable (.exe or .dll) when the project is built. After that, the application can be deployed on any
machine, including Web servers.

For ASP.NET 2.x applications, be sure that the App_Licenses.dll assembly created during development of the
application is deployed to the bin application bin directory on the Web server.

If your ASP.NET application uses WinForms user controls with constituent licensed controls, the runtime license

is embedded in the WinForms user control assembly. In this case, you must be sure to rebuild and update the user
control whenever the licensed embedded controls are updated.

I downloaded a new build of a component that I have purchased, and now I'm getting the splash screen
when I build my projects.

Make sure that the serial number is still valid. If you licensed the component over a year ago, your subscription

may have expired. In this case, you have two options:

Option 1 – Renew your subscription to get a new serial number.

If you choose this option, you will receive a new serial number that you can use to license the new components

(from the installation utility or directly from the About Box).

The new subscription will entitle you to a full year of upgrades and to download the latest maintenance builds
directly from http://prerelease.componentone.com/.

Option 2 – Continue to use the components you have.

Subscriptions expire, products do not. You can continue to use the components you received or downloaded while
your subscription was valid.

Studio for Silverlight Licensing

Licensing for ComponentOne Studio for Silverlight is similar to licensing in other ComponentOne products but
there are a few differences to note.

Initially licensing in handled similarly to other ComponentOne products. When a user decides to purchase a
product, he receives an installation program and a Serial Number. During the installation process, the user is

prompted for the serial number that is saved on the system.

http://prerelease.componentone.com/

 13

In ComponentOne Studio for Silverlight, when a control is dropped on a form, a license nag dialog box appears
one time. The nag screen appears similar to the following image:

The About dialog box displays version information, online resources, and (if the control is unlicensed) buttons to
purchase, activate, and register the product.

All ComponentOne products are designed to display licensing information at run time if the product is not
licensed. None will throw licensing exceptions and prevent applications from running. Each time an unlicensed
Silverlight application is run; end-users will see the following pop-up dialog box:

14

To stop this message from appearing, enter the product's serial number by clicking the Activate button on the

About dialog box of any ComponentOne product, if available, or by rerunning the installation and entering the

serial number in the licensing dialog box. To open the About dialog box, right-click the control and select the

About option:

Note that when the user modifies any property of a ComponentOne Silverlight control in Visual Studio or Blend,
the product will check if a valid license is present. If the product is not currently licensed, an attached property will

be added to the control (the C1NagScreen.Nag property). Then, when the application executed, the product will

check if that property is set, and show a nag screen if the C1NagScreen.Nag property is set to True. If the user has
a valid license the property is not added or is just removed.

One important aspect of this of this process is that the user should manually remove all instances of

c1:C1NagScreen.Nag="true" in the XAML markup in all files after registering the license (or re-open all the files
that include ComponentOne controls in any of the editors). This will ensure that the nag screen does not appear

when the application is run.

Technical Support
ComponentOne offers various support options. For a complete list and a description of each, visit the ComponentOne

Web site at http://www.componentone.com/SuperProducts/SupportServices/.

Some methods for obtaining technical support include:

 Online Resources

ComponentOne provides customers with a comprehensive set of technical resources in the form of FAQs,
samples and videos, Version Release History, searchable Knowledge base, searchable Online Help and
more. We recommend this as the first place to look for answers to your technical questions.

 Online Support via our Incident Submission Form
This online support service provides you with direct access to our Technical Support staff via an online incident

submission form. When you submit an incident, you'll immediately receive a response via e-mail confirming

http://www.componentone.com/SuperProducts/SupportServices/
http://our.componentone.com/
http://www.componentone.com/Members/?ReturnUrl=%2fSupport%2fdefault.aspx%3fnew%3dtrue
http://www.componentone.com/Members/?ReturnUrl=%2fSupport%2fdefault.aspx%3fnew%3dtrue

 15

that you've successfully created an incident. This email will provide you with an Issue Reference ID and will

provide you with a set of possible answers to your question from our Knowledgebase. You will receive a

response from one of the ComponentOne staff members via e-mail in 2 business days or less.

 Product Forums
ComponentOne's product forums are available for users to share information, tips, and techniques
regarding ComponentOne products. ComponentOne developers will be available on the forums to share
insider tips and technique and answer users' questions. Please note that a ComponentOne User Account is
required to participate in the ComponentOne Product Forums.

 Installation Issues

Registered users can obtain help with problems installing ComponentOne products. Contact technical
support by using the online incident submission form or by phone (412.681.4738). Please note that this
does not include issues related to distributing a product to end-users in an application.

 Documentation

Microsoft integrated ComponentOne documentation can be installed with each of our products, and
documentation is also available online. If you have suggestions on how we can improve our

documentation, please email the Documentation team. Please note that e-mail sent to the Documentation
team is for documentation feedback only. Technical Support and Sales issues should be sent directly to their
respective departments.

Note: You must create a ComponentOne Account and register your product with a valid serial number to obtain
support using some of the above methods.

Redistributable Files
ComponentOne DataGrid for Silverlight is developed and published by ComponentOne LLC. You may use it to
develop applications in conjunction with Microsoft Visual Studio or any other programming environment that
enables the user to use and integrate the control(s). You may also distribute, free of royalties, the following
Redistributable Files with any such application you develop to the extent that they are used separately on a single
CPU on the client/workstation side of the network:

 C1.Silverlight.dll

 C1.Silverlight.DataGrid.dll

 C1.Silverlight.DataGrid.Filters.dll

 C1.Silverlight.DataGrid.Summaries.dll

Site licenses are available for groups of multiple developers. Please contact Sales@ComponentOne.com for details.

About this Documentation
You can create your applications using Microsoft Expression Blend or Visual Studio, but Blend is currently the
only design-time environment that allows users to design XAML documents visually. In this documentation, we

will use the Design workspace of Blend for most examples.

Acknowledgements

Microsoft, Windows, Windows Vista, Microsoft Expression, Visual Studio, and Silverlight, are either registered trademarks or

trademarks of Microsoft Corporation in the United States and/or other countries. Firefox is a registered trademark of the Mozilla
Foundation. Safari is a trademark of Apple Inc., registered in the U.S. and other countries.

ComponentOne

If you have any suggestions or ideas for new features or controls, please call us or write:

Corporate Headquarters

http://our.componentone.com/groups/
http://our.componentone.com/groups/
http://our.componentone.com/groups/
http://www.componentone.com/Members/?ReturnUrl=%2fSupport%2fdefault.aspx%3fnew%3dtrue
mailto:documentation@componentone.com
mailto:documentation@componentone.com
mailto:documentation@componentone.com
http://www.componentone.com/SuperProducts/SupportServices/
mailto:sales@componentone.com
mailto:sales@componentone.com

16

ComponentOne LLC

201 South Highland Avenue

3rd Floor

Pittsburgh, PA 15206 • USA

412.681.4343

412.681.4384 (Fax)

http://www.componentone.com/

ComponentOne Doc-To-Help

This documentation was produced using ComponentOne Doc-To-Help® Enterprise.

XAML and XAML Namespaces
XAML is a declarative XML-based language that is used as a user interface markup language in Silverlight and
Windows Presentation Foundation (WPF) and the .NET Framework 3.0 or later. With XAML you can create a
graphically rich customized user interface, perform data binding, and much more. For more information on
XAML, please see http://www.microsoft.com.

XAML Namespaces

Namespaces organize the objects defined in an assembly. Assemblies can contain multiple namespaces, which can
in turn contain other namespaces. Namespaces prevent ambiguity and simplify references when using large groups
of objects such as class libraries.

When you create a Microsoft Expression Blend project, a XAML file is created for you and some initial
namespaces are specified:

Namespace Description

xmlns="http://schemas.microsoft.com/win

fx/2006/xaml/presentation"

This is the default Windows Presentation Foundation

namespace.

xmlns:x="http://schemas.microsoft.com/
winfx/2006/xaml"

This is a XAML namespace that is mapped to the x: prefix.
The x: prefix provides a quick, easy way to reference the

namespace, which defines many commonly-used features
necessary for WPF applications.

When you add a C1DataGrid control to the window in Microsoft Expression Blend or Visual Studio, Blend or

Visual Studio automatically creates an XML namespace for the control. The namespace looks like the following in
Microsoft Expression Blend:

xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml"

The namespace value is c1. This is a unified namespace; once this is in the project, all ComponentOne WPF and
Silverlight controls found in your references will be accessible through XAML (and IntelliSense). Note that you
still need to add references to the assemblies for each control you need to use.

You can also choose to create your own custom name for the namespace. For example:
xmlns:MyGrid="http://schemas.componentone.com/winfx/2006/xaml"

You can now use your custom namespace when assigning properties, methods, and events. For example, use the
following XAML to add a border around the grid:

<MyGrid:C1DataGrid Name="C1DataGrid1" BorderThickness="10,10,10,10">

http://www.componentone.com/
http://www.doctohelp.com/
http://www.microsoft.com/

 17

Introduction to Silverlight
The following topics detail information about getting started with Silverlight, including Silverlight resources, and
general information about templates and deploying Silverlight files.

Silverlight Resources

This help file focuses on ComponentOne Studio for Silverlight. For general help on getting started with
Silverlight, we recommend the following resources:

 http://www.silverlight.net

The official Silverlight site, with many links to downloads, samples, tutorials, and more.

 http://silverlight.net/learn/tutorials.aspx

Silverlight tutorials by Jesse Liberty. Topics covered include:

 Tutorial 1: Silverlight User Interface Controls

 Tutorial 2: Data Binding

 Tutorial 3: Displaying SQL Database Data in a DataGrid using LINQ and WCF

 Tutorial 4: User Controls

 Tutorial 5: Styles, Templates and Visual State Manager

 Tutorial 6: Expression Blend for Developers

 Tutorial 7: DataBinding & DataTemplates Using Expression Blend

 Tutorial 8: Multi-page Applications

 Tutorial 9: ADO.NET DataEntities and WCF Feeding a Silverlight DataGrid

 Tutorial 10: Hyper-Video

 http://timheuer.com/blog/articles/getting-started-with-silverlight-development.aspx

Silverlight tutorials by Tim Heuer. Topics covered include:

 Part 1: Really getting started – the tools you need and getting your first Hello World

 Part 2: Defining UI Layout – understanding layout and using Blend to help

 Part 3: Accessing data – how to get data from where

 Part 4: Binding the data – once you get the data, how can you use it?

 Part 5: Integrating additional controls – using controls that aren’t a part of the core

 Part 6: Polishing the UI with styles and templates

 Part 7: Taking the application out-of-browser

 http://weblogs.asp.net/scottgu/pages/silverlight-posts.aspx

Scott Guthrie's Silverlight Tips, Tricks, Tutorials and Links Page. A useful resource, this page links to
several tutorials and samples.

 http://weblogs.asp.net/scottgu/archive/2008/02/22/first-look-at-silverlight-2.aspx

An excellent eight-part tutorial by Scott Guthrie, covering the following topics:

 Part 1: Creating "Hello World" with Silverlight 2 and VS 2008

http://www.silverlight.net/
http://silverlight.net/learn/tutorials.aspx
http://timheuer.com/blog/articles/getting-started-with-silverlight-development.aspx
http://weblogs.asp.net/scottgu/pages/silverlight-posts.aspx
http://weblogs.asp.net/scottgu/archive/2008/02/22/first-look-at-silverlight-2.aspx

18

 Part 2: Using Layout Management

 Part 3: Using Networking to Retrieve Data and Populate a DataGrid

 Part 4: Using Style Elements to Better Encapsulate Look and Feel

 Part 5: Using the ListBox and DataBinding to Display List Data

 Part 6: Using User Controls to Implement Master/Details Scenarios

 Part 7: Using Templates to Customize Control Look and Feel

 Part 8: Creating a Digg Desktop Version of our Application using WPF

 http://blogs.msdn.com/corrinab/archive/2008/03/11/silverlight-2-control-skins.aspx

A practical discussion of skinning Silverlight controls and applications by Corrina Barber.

Creating a New Silverlight Project

The following topic details how to create a new Silverlight project in Microsoft Visual Studio 2008 and in
Microsoft Expression Blend 3.

In Visual Studio 2008

Complete the following steps to create a new Silverlight project in Microsoft Visual Studio 2008:

1. Select File | New | Project to open the New Project dialog box in Visual Studio 2008.

2. In the Project types pane, expand either the Visual Basic or Visual C# node and select Silverlight.

3. Choose Silverlight Application in the Templates pane.

4. Name the project, specify a location for the project, and click OK.

http://blogs.msdn.com/corrinab/archive/2008/03/11/silverlight-2-control-skins.aspx

 19

Next, Visual Studio will prompt you for the type of hosting you want to use for the new project.

5. In the NewSilverlight Application dialog box, select OK to accept the default name and options and to
create the project.

In Expression Blend 4

Complete the following steps to create a new Silverlight project in Microsoft Expression Blend 4:

6. Select File | New Project to open the New Project dialog box in Blend 4.

7. In the Project types pane, click the Silverlight node.

8. In the right pane, choose Silverlight Application + Website in the Templates pane to create a project
with an associated Web site.

9. Name the project, specify a location for the project, choose a language (Visual C# or Visual Basic), and

click OK.

20

Your new project will be created.

The Project

The solution you just created will contain two projects, YourProject and YourProject.Web:

 YourProject: This is the Silverlight application proper. It will produce a XAP file that gets downloaded to
the client and runs inside the Silverlight plug-in.

 YourProject.Web: This is the host application. It runs on the server and provides support for the

Silverlight application.

Using Templates

The previous sections focused on the ComponentOne Studio for Silverlight controls. The following topics focus

on Data and Control Templates, and how they are applied to Silverlight controls in general (including controls
provided by Microsoft). If you are an experienced Silverlight developer, this information may be of no interest to
you.

Data Templates

DataTemplates are a powerful feature in Silverlight. They are virtually identical to the DataTemplates in WPF, so

if you know WPF there's nothing really new about them.

On the other hand, if you have never used WPF and have seen pieces of XAML that contain styles and templates,
you may be confused by the concepts and notation. The good news is DataTemplates are very powerful and are
not overly complicated. Once you start using them, the concept will make sense in a couple of minutes and you
will be on your way. Remember, just reading the tutorial probably won't be enough to fully grasp the concept.
After reading, you should play with the projects.

Create the "Templates" Solution

To illustrate the power of DataTemplates, let's create a new Silverlight solution. Call it "Templates". Complete the
following steps:

1. Select File | New | Project to open the New Project dialog box in Visual Studio 2008.

2. In the Project types pane, expand either the Visual Basic or Visual C# node and select Silverlight.

3. Choose Silverlight Application in the Templates pane.

4. Name the project "Templates", specify a location for the project, and click OK.

Next, Visual Studio will prompt you for the type of hosting you want to use for the new project.

5. In the New Silverlight Application dialog box, select OK to accept the default name ("Templates.Web")
and settings and create the project.

6. Right-click the Templates project in the Solution Explorer and select Add Reference.

 21

7. In the Add Reference dialog box locate and select the C1.Silverlight.dll assembly and click OK to add a
reference to your project.

This is required since we will be adding C1.Silverlight controls to the page.

8. Now, open the MainPage.xaml file in the Templates project and paste in the XAML below:
<UserControl x:Class="Templates.MainPage"

 xmlns="http://schemas.microsoft.com/client/2007"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:C1_Silverlight="clr-

namespace:C1.Silverlight;assembly=C1.Silverlight">

 <Grid x:Name="LayoutRoot" >

 <Grid.Background>

 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">

 <GradientStop Color="#FF7EB9F0"/>

 <GradientStop Color="#FF284259" Offset="1"/>

 </LinearGradientBrush>

 </Grid.Background>

 <!-- Grid layout -->

 <Grid.RowDefinitions>

 <RowDefinition Height="30" />

 <RowDefinition Height="*" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*"/>

 <ColumnDefinition Width="*"/>

 </Grid.ColumnDefinitions>

 <!-- Page title -->

 <TextBlock Text="Silverlight Templates" Grid.Column="0"

Grid.ColumnSpan="2"

 TextAlignment="Center" FontSize="18" FontWeight="Bold" />

 <!-- ListBox on the left -->

 <StackPanel Grid.Row="1" Margin="5" >

 <TextBlock Text="ListBox Control" />

 <ListBox x:Name="_listBox" />

 </StackPanel>

 <!-- C1ComboBoxes on the right -->

 <StackPanel Grid.Column="2" Grid.Row="1" Margin="5" >

 <TextBlock Text="C1ComboBox Controls" />

 <C1_Silverlight:C1ComboBox x:Name="_cmb1" Margin="0,0,0,5" />

 <C1_Silverlight:C1ComboBox x:Name="_cmb2" Margin="0,0,0,5" />

 </StackPanel>

 </Grid>

</UserControl>

This creates a page with two columns. The left column has a standard ListBox control and the right has

two C1ComboBoxes. These are the controls we will populate and style in the following steps.

Populate the Controls

Before we start using templates and styles, let us populate the controls first. To do that, complete the following:

9. Open the MainPage.xaml.cs file and paste the following code into the page constructor:

22

public Page()

{

 InitializeComponent();

 // Get list of items

 IEnumerable list = GetItems();

 // Add items to ListBox and in C1ComboBox

 _listBox.ItemsSource = list;

 _cmb1.ItemsSource = list;

 // Show fonts in the other C1ComboBox

 FontFamily[] ff = new FontFamily[]

 {

 new FontFamily("Default font"),

 new FontFamily("Arial"),

 new FontFamily("Courier New"),

 new FontFamily("Times New Roman"),

 new FontFamily("Trebuchet MS"),

 new FontFamily("Verdana")

 };

 _cmb2.ItemsSource = ff;

}

The code populates the ListBox and both C1ComboBoxes by setting their ItemsSource property.

ItemsSource is a standard property present in most controls that support lists of items (ListBox,

DataGrid, C1ComboBox, and so on).

10. Add the following code to implement the GetItems() method in the MainPage class:
List<DataItem> GetItems()

{

 List<DataItem> members = new List<DataItem>();

 foreach (MemberInfo mi in this.GetType().GetMembers())

 {

 members.Add(new DataItem(mi));

 }

 return members;

}

11. Add the definition of the DataItem class. to the MainPage.xaml.cs file, below the MainPage class
definition:

public class DataItem

{

 public string ItemName { get; set; }

 public MemberTypes ItemType { get; set; }

 public DataItem(MemberInfo mi)

 {

 ItemName = mi.Name;

 ItemType = mi.MemberType;

 }

}

If you run the project now, you will see that the controls are being populated. However, they don't do a very good
job of showing the items:

 23

The controls simply convert the DataItem objects into strings using their ToString() method, which we didn't
override and by default returns a string representation of the object type ("Templates.DataItem").

The bottom C1ComboBox displays the font family names correctly. That's because the FontFamily class

implements the ToString() method and returns the font family name.

It is easy to provide a ToString() implementation that would return a more useful string, containing one or more
properties. For example:

public override string ToString()

{

 return string.Format("{0} {1}", ItemType, ItemName);

}

If you add this method to the DataItem class and run the project again, you will see a slightly more satisfying
result. But there's only so much you can do with plain strings. To represent complex objects effectively, we need

something more. Enter Data Templates!

Defining and Using Data Templates

Data Templates are objects that map regular .NET objects into UIElement objects. They are used by controls that

contain lists of regular .NET objects to convert these objects into UIElement objects that can be displayed to the

user.

For example, the Data Template below can be used to map our DataItem objects into a StackPanel with two

TextBlock elements that display the ItemName and ItemType properties of the DataItem. This is what the
template definition looks like in XAML markup:

<UserControl x:Class="Templates.MainPage"

 xmlns="http://schemas.microsoft.com/client/2007"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:C1_Silverlight="clr-

namespace:C1.Silverlight;assembly=C1.Silverlight">

 <!-- Data template used to convert DataItem objects into UIElement

objects -->

24

 <UserControl.Resources>

 <DataTemplate x:Key="DataItemTemplate" >

 <StackPanel Orientation="Horizontal" Height="30" >

 <TextBlock Text="{Binding ItemType}"

 Margin="5" VerticalAlignment="Bottom" Foreground="Red"

FontSize="10" />

 <TextBlock Text="{Binding ItemName}"

 Margin="5" VerticalAlignment="Bottom" />

 </StackPanel>

 </DataTemplate>

 </UserControl.Resources>

 <!-- Page content (same as before)... -->

This template tells Silverlight (or WPF) that in order to represent a source data object, it should do this:

12. Create a StackPanel with two TextBlocks in it,

13. Bind the Text property of the first TextBlock to the ItemType property of the source data object, and

14. Bind the Text property of the second TextBlock object to the ItemName property of the source object.

That's it. The template does not specify what type of control can use it (any control can, we will use it with the

ListBox and also with the C1ComboBox), and it does not specify the type of object it should expect (any object

will do, as long as it has public properties named ItemType and ItemName).

To use the template, add an ItemTemplate attribute to the controls where you want the template to be applied. In

our example, we will apply it to the ListBox declaration in the MainPage.xaml file:
<!-- ListBox on the left -->

<StackPanel Grid.Row="1" Margin="5" >

 <TextBlock Text="ListBox Control" />

 <ListBox x:Name="_listBox"

 ItemTemplate="{StaticResource DataItemTemplate}" />

</StackPanel>

And also to the top C1ComboBox:
<!-- C1ComboBox on the right -->

<StackPanel Grid.Column="2" Grid.Row="1" Margin="5" >

 <TextBlock Text="C1ComboBox Controls" />

 <!-- C1ComboBox 1 -->

 <C1_Silverlight:C1ComboBox x:Name="_cmb1" Margin="0,0,0,5"

 ItemTemplate="{StaticResource DataItemTemplate}" />

Note that we can now change the appearance of the DataItem objects by modifying the template in one place. Any
changes will automatically be applied to all objects that use that template, making application maintenance much
easier.

Before you run the application again, let's add a template to the second C1ComboBox as well. This control
contains a list of font families. We can use templates to display each item using the actual font they represent.

This time, we will not define the template as a resource. It will only be used in one place, so we can insert it inline,

as shown below:
<!-- C1ComboBox 2 -->

<C1_Silverlight:C1ComboBox x:Name="_cmb2" FontSize="12" Margin="0,0,0,5" >

 <C1_Silverlight:C1ComboBox.ItemTemplate>

 <DataTemplate>

 <TextBlock Text="{Binding}" FontFamily="{Binding}" Margin="4" />

 </DataTemplate>

 </C1_Silverlight:C1ComboBox.ItemTemplate>

</C1_Silverlight:C1ComboBox>

 25

Don't let the XAML syntax confuse you. This specifies that in order to create items from data, the control should

use a DataTemplate that consists of a single TextBlock element. The TextBlock element should have two of its

properties (Text and FontFamily) bound to the data object itself (as opposed to properties of that object).

In this case, the data object is a FontFamily object. Because the template assigns this object to the Text property

and also to the FontFamily property, the TextBlock will display the font name and will use the actual font.

If you run the project now, you should see this result:

Note that if you assign a DataTemplate to the C1ComboBox, it will no longer be able to perform text-related tasks
such as auto-search and editing. If you want to re-enable those features, you should provide your own

ItemConverter that is a standard TypeConverter.

Styles and Templates are extremely powerful concepts. We encourage you to play and experiment with this
sample. Try modifying the templates to show the data in different ways. The more you experiment, the more
comfortable you will feel with these concepts and with the Silverlight/WPF application architecture.

Control Templates

Data Templates allow you to specify how to convert arbitrary data objects into UIElement objects that can be

displayed to the user. But that's not the only use of templates in Silverlight and WPF. You can also use templates

to modify the visual structure of existing UIElement objects such as controls.

Most controls have their visual appearance defined by a native XAML resource (typically contained within the

assembly that defines the control). This resource specifies a Style which assigns values to most of the control's

properties, including its Template property (which defines the control's internal "visual tree").

For example:
<Style TargetType="HyperlinkButton">

 <Setter Property="IsEnabled" Value="true" />

 <Setter Property="IsTabStop" Value="true" />

 <Setter Property="Foreground" Value="#FF417DA5" />

 <Setter Property="Cursor" Value="Hand" />

 <Setter Property="Template">

26

 <Setter.Value>

 <ControlTemplate TargetType="HyperlinkButton">

 <Grid x:Name="RootElement" Cursor="{TemplateBinding Cursor}">

 <!-- Focus indicator -->

 <Rectangle x:Name="FocusVisualElement" StrokeDashCap="Round"

...=""/>

 <!-- HyperlinkButton content -->

 <ContentPresenter x:Name="Normal"

 Background="{TemplateBinding Background}"

 Content="{TemplateBinding Content}"

 ContentTemplate="{TemplateBinding ContentTemplate}"...=""/>

 </Grid>

 </ControlTemplate>

 </Setter.Value>

 </Setter>

</Style>

This is a very simplified version of the XAML resource used to specify the HyperlinkButton control. It consists of

a Style that begins by setting the default value of several simple properties, and then assigns a value of type

ControlTemplate to the control's Template property.

The ControlTemplate in this case consists of a Grid (RootElement) that contains a Rectangle (FocusVisualElement)

used to indicate the focused state and a ContentPresenter (Normal) that represents the content portion of the

control (and itself contains another ContentTemplate property).

Note the TemplateBinding attributes in the XAML. These constructs are used to map properties exposed by the

control to properties of the template elements. For example, the Background property of the hyperlink control is

mapped to the Background property of the Normal element specified in the template.

Specifying controls this way has some advantages. The complete visual appearance is defined in XAML and can
be modified by a professional designer using Expression Blend, without touching the code behind it. In practice,
this is not as easy as it sounds, because there are logical relationships between the template and the control
implementation.

Recognizing this problem, Silverlight introduced a TemplatePart attribute that allows control classes to specify the

names and types it expects its templates to contain. In the future, this attribute will be added to WPF as well, and
used by designer applications such as Blend to validate templates and ensure they are valid for the target control.

For example, the Microsoft Button control contains the following TemplatePart attributes:
/// <summary>

/// Represents a button control, which reacts to the Click event.

/// </summary>

[TemplatePart(Name = Button.ElementRootName, Type =

typeof(FrameworkElement))]

[TemplatePart(Name = Button.ElementFocusVisualName, Type =

typeof(UIElement))]

[TemplatePart(Name = Button.StateNormalName, Type = typeof(Storyboard))]

[TemplatePart(Name = Button.StateMouseOverName, Type =

typeof(Storyboard))]

[TemplatePart(Name = Button.StatePressedName, Type = typeof(Storyboard))]

[TemplatePart(Name = Button.StateDisabledName, Type = typeof(Storyboard))]

public partial class Button : ButtonBase

These six template parts constitute a contract between the control implementation and the design specification.
They tell the designer that the control implementation expects to find certain elements in the template (defined by
their name and type).

Well-behaved controls should degrade gracefully, not crashing if some non-essential elements are missing from the

template. For example, if the control can't find a Storyboard named Button.StateMouseOverName in the template, it

should not do anything when the mouse hovers over it.

 27

Well-implemented templates should fulfill the contract and provide all the elements that the control logic supports.
Designer applications such as Blend can enforce the contract and warn designers if they try to apply invalid
templates to controls.

For the time being, the easiest way to create new templates for existing controls is to start with the original XAML
and customize it.

We will not show any actual examples of how to create and use custom control templates here. Instead, we suggest
you download the examples developed by Corrina Barber:

http://blogs.msdn.com/corrinab/archive/2008/03/11/silverlight-2-control-skins.aspx

The link contains previews and downloads for three 'skins' (bubbly, red, and flat). Each skin consists of a set of

Style specifications, similar to the one shown above, which are added to the application's global XAML file
(App.xaml). The format is similar to this:

<Application xmlns="http://schemas.microsoft.com/client/2007"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 x:Class="Styles_Red.App"

<Application.Resources>

 <!-- Button -->

 <Style x:Key="buttonStyle" TargetType="Button">

 <Setter Property="IsEnabled" Value="true" />

 <Setter Property="IsTabStop" Value="true" />

 <Setter Property="Foreground" Value="#FF1E2B33" />

 <Setter Property="Cursor" Value="Hand" />

 <Setter Property="TextAlignment" Value="Center" />

 <!-- A lot more XAML follows… -->

Once these styles are defined in the App.xaml file, they can be assigned to any controls in the application:
<Button Content="Button" Style="{StaticResource buttonStyle}"/>

If you are curious, this is what the Button control looks like after applying each of the skins defined in the
reference above:

Default

Bubbly

Red

Flat

This mechanism is extremely powerful. You can change what the controls look like and even the parts used

internally to build them.

Unlike data templates, however, control templates are not simple to create and modify. Creating or changing a
control template requires not only design talent but also some understanding of how the control works.

It is also a labor-intensive proposition. In addition to their normal appearance, most controls have Storyboards
that are applied to change their appearance when the mouse hovers over them, when they gain focus, get pressed,

get disabled, and so on (see the C1ComboBox example above).

Furthermore, all controls in an application should appear consistent. You probably wouldn't want to mix bubbly
buttons with regular scrollbars on the same page for example. So each 'skin' will contain styles for many controls.

Some controls are designed with custom templates in mind. For example, the C1ComboBox has an ItemsPanel

property of type ItemsPanelTemplate. You can use this property to replace the default drop-down ListBox

element with any other UIElement you like.

For examples of using the ItemsPanel property, check the ControlExplorer sample installed by default with

ComponentOne Studio for Silverlight.

http://blogs.msdn.com/corrinab/archive/2008/03/11/silverlight-2-control-skins.aspx

28

Preparing Your Enterprise Environment

Several considerations are important to take into account when planning a corporate deployment of your
Silverlight applications in an enterprise environment. For information about these considerations and a description

of system requirements and deployment methods as well as the techniques to maintain and support Silverlight after
deployment, please see the Silverlight Enterprise Deployment Guide provided by the Microsoft Silverlight team.

The guide helps you to plan and carry out a corporate deployment of Silverlight, and covers:

 Planning the deployment

 Testing deployment strategy

 Deploying Silverlight

 Maintaining Silverlight in your environment

The Silverlight Enterprise Deployment Guide is available for download from the Silverlight whitepapers site:
http://silverlight.net/learn/whitepapers.aspx.

Theming
One of the main advantages to using Silverlight is the ability to change the style or template of any control.
Controls are "lookless" with fully customizable user interfaces and the ability to use built-in and custom themes.
Themes allow you to customize the appearance of controls and take advantage of Silverlight's XAML-based
styling. The following topics introduce you to styling Silverlight controls with themes.

You can customize WPF and Microsoft Silverlight controls by creating and modifying control templates and
styles. This results in a unique and consistent look for your application.

Templates and styles define the pieces that make up a control and the default behavior of the control, respectively.
You can create templates and styles by making copies of the original styles and templates for a control. Modifying
templates and styles is an easy way to essentially make new controls in Design view of Microsoft Expression
Blend, without having to use code. The following topics provide a detailed comparison of styles and templates to
help you decide whether you want to modify the style or template of a control, or both. The topics also discuss the

built-in themes available in ComponentOne Studio for Silverlight.

Available Themes

ComponentOne Studio for Silverlight includes several theming options, and several built-in Silverlight Toolkit

themes including:

 BureauBlack

 ExpressionDark

 ExpressionLight

 RainierOrange

 ShinyBlue

 WhistlerBlue

Each of these themes is based on themes in the Silverlight Toolkit and installed in its own assembly in the Studio

for Silverlight installation directory. The following topics detail each built-in theme.

BureauBlack

The BureauBlack theme is a dark colored theme similar to the Microsoft Bureau Black theme included in the

Silverlight Toolkit. The BureauBlack theme appears similar the following when applied to the ComponentOne

Studio for Silverlight charting controls:

http://go.microsoft.com/?linkid=9665774
http://go.microsoft.com/?linkid=9665774
http://silverlight.net/learn/whitepapers.aspx

 29

ExpressionDark

The ExpressionDark theme is a grayscale theme based on the Microsoft Expression Dark theme, which is included
in the Silverlight Toolkit. For example, the theme appears similar the following when applied to the

ComponentOne Studio for Silverlight charting controls:

30

ExpressionLight

The ExpressionLight theme is a grayscale theme based on the Microsoft Expression Light theme, which is
included in the Silverlight Toolkit. For example, the theme appears similar the following when applied to the

ComponentOne Studio for Silverlight charting controls:

RainierOrange

The RainerOrange theme is an orange-based theme similar to the Microsoft Rainer Orange theme, which is
included in the Silverlight Toolkit. The RainerOrange theme appears similar the following when applied to the

ComponentOne Studio for Silverlight charting controls:

 31

ShinyBlue

The ShinyBlue theme is a blue-based theme similar to the Microsoft Shiny Blue theme included in the Silverlight

Toolkit. The ShinyBlue theme appears similar the following when applied to the ComponentOne Studio for

Silverlight charting controls:

32

WhistlerBlue

The WhistlerBlue theme is a blue-based theme similar to the Microsoft Whistler Blue theme, which is included in

the Silverlight Toolkit. The WhistlerBlue theme appears similar the following when applied to the ComponentOne

Studio for Silverlight charting controls:

Custom Themes

In addition to using one of the built-in themes, you can create your own custom theme from scratch or create a
custom theme based on an existing built-in theme. See Included XAML Files (page 34) for the included files that
you can base a theme on.

Included XAML Files

Several auxiliary XAML elements are installed with ComponentOne Studio for Silverlight. These elements

include templates and themes and are located in the Studio for Silverlight installation directory. You can
incorporate these elements into your project to, for example, create your own theme based on the included Office
2007 themes.

By default, these files are located in the generics.zip file in the C:\Program Files\ComponentOne\Studio for

Silverlight 4.0\Help folder. Unzip the generics.zip file to a folder to see all the XAML files associated with

Studio for Silverlight controls. In the following topics the included files are listed by assembly with their location

folder within the generics.zip file noted.

C1.Silverlight.DataGrid

The following XAML file can be used to customize items in the C1.Silverlight.DataGrid assembly:

Element Folder Description

generic.xaml C1.Silverlight.DataGri
d\themes

Specifies the templates for different styles and
the initial style of the controls.

 33

Common.xaml C1.Silverlight.DataGri
d\themes

Specifies attributes for common elements in the
controls.

DataGridCellPresenter.xa
ml

C1.Silverlight.DataGri
d\themes

Specifies attributes for common elements in the
controls.

DataGridColumnHeaderPre
senter.xaml

C1.Silverlight.DataGri
d\themes

Specifies attributes for the column header
presenter.

DataGridDetailsPresenter.
xaml

C1.Silverlight.DataGri
d\themes

Specifies attributes for the data details
presenter.

DataGridDragNDrop.xaml C1.Silverlight.DataGri
d\themes

Specifies attributes for grid drag-and-drop
operation.

DataGridFilter.xaml C1.Silverlight.DataGri
d\themes

Specifies attributes for the grid's filtering.

DataGridGroupingPresente
r.xaml

C1.Silverlight.DataGri
d\themes

Specifies attributes for the grouping presenter.

DataGridRowHeaderPresen
ter.xaml

C1.Silverlight.DataGri
d\themes

Specifies attributes for the row header presenter.

DataGridRowPresenter.xa

ml

C1.Silverlight.DataGri

d\themes

Specifies attributes for the row presenter.

DataGridVerticalFreezingS
eparatorPresenter.xaml

C1.Silverlight.DataGri
d\themes

Specifies attributes for the freezing separator
presenter.

C1.Silverlight.DataGrid.Ria

The following XAML file can be used to customize items in the C1.Silverlight.DataGrid.Ria assembly:

Element Folder Description

generic.xaml C1.Silverlight.DataGri
d.Ria\themes

Specifies the templates for different styles and
the initial style of the controls.

C1.Silverlight.Theming.BureauBlack

The following XAML files can be used to customize items in the C1.Silverlight.BureauBlack assembly:

Element Folder Description

BureauBlack.xaml C1.Silverlight.Themin
g.BureauBlack

Specifies resources and styling elements for each
ComponentOne Silverlight control.

System.Windows.Controls.
Theming.BureauBlack.xam

l

C1.Silverlight.Themin
g.BureauBlack

Specifies the standard Microsoft BureauBlack
resources and styling elements.

Theme.xaml C1.Silverlight.Themin
g.BureauBlack

Specifies the standard resources and styling
elements.

C1.Silverlight.Theming.ExpressionDark

The following XAML files can be used to customize items in the C1.Silverlight.ExpressionDark assembly:

Element Folder Description

ExpressionDark.xaml C1.Silverlight.Themin
g.ExpressionDark

Specifies resources and styling elements for each
ComponentOne Silverlight control.

System.Windows.Controls. C1.Silverlight.Themin Specifies the standard Microsoft ExpressionDark

34

Theming.ExpressionDark.x

aml

g.ExpressionDark resources and styling elements.

Theme.xaml C1.Silverlight.Themin
g.ExpressionDark

Specifies the standard resources and styling
elements.

C1.Silverlight.Theming.ExpressionLight

The following XAML files can be used to customize items in the C1.Silverlight.ExpressionLight assembly:

Element Folder Description

ExpressionLight.xaml C1.Silverlight.Themin
g.ExpressionLight

Specifies resources and styling elements for each
ComponentOne Silverlight control.

System.Windows.Controls.
Theming.ExpressionLight.x

aml

C1.Silverlight.Themin
g.ExpressionLight

Specifies the standard Microsoft ExpressionLight
resources and styling elements.

Theme.xaml C1.Silverlight.Themin
g.ExpressionLight

Specifies the standard resources and styling
elements.

C1.Silverlight.Theming.RainierOrange

The following XAML files can be used to customize items in the C1.Silverlight.RainierOrange assembly:

Element Folder Description

RainierOrange.xaml C1.Silverlight.Themin
g.RainierOrange

Specifies resources and styling elements for each
ComponentOne Silverlight control.

Theme.xaml C1.Silverlight.Themin
g.RainierOrange

Specifies the standard resources and styling
elements.

C1.Silverlight.Theming.ShinyBlue

The following XAML files can be used to customize items in the C1.Silverlight.ShinyBlue assembly:

Element Folder Description

ShinyBlue.xaml C1.Silverlight.Themin
g.ShinyBlue

Specifies resources and styling elements for each
ComponentOne Silverlight control.

Theme.xaml C1.Silverlight.Themin
g.ShinyBlue

Specifies the standard resources and styling
elements.

C1.Silverlight.Theming.WhistlerBlue

The following XAML files can be used to customize items in the C1.Silverlight.WhistlerBlue assembly:

Element Folder Description

WhistlerBlue.xaml C1.Silverlight.Themin
g.WhistlerBlue

Specifies resources and styling elements for each
ComponentOne Silverlight control.

Theme.xaml C1.Silverlight.Themin
g.WhistlerBlue

Specifies the standard resources and styling
elements.

 35

Implicit and Explicit Styles

The following topic detail using implicit and explicit styles and using the ImplicitStyleManager which is included

in the Silverlight Toolkit. For more information about the Silverlight Toolkit, see CodePlex.

Implicit Styles

If you're familiar with WPF (Windows Presentation Foundation) you may be used to setting styles implicitly so
the application has a uniform appearance – for example, you're used to setting the style for all instances of a
particular control in the application's resources. Unfortunately Silverlight does not support implicit styles in the
same way that WPF does and you would normally have to indicate the style to use in each instance of the control.

This can be tedious to do if you have several controls on a page and that's where the ImplicitStyleManager comes

in handy.

The ImplicitStyleManager class is located in the Microsoft.Windows.Controls.Theming namespace (in the
Microsoft.Windows.Controls assembly).

WPF and Silverlight Styling

In WPF, you can set styles implicitly. When you set styles implicitly all instances of a particular type can be styled

at once. For example, the WPF C1DropDown control might be styled with the following markup:

<Grid>

 <Grid.Resources>

 <Style TargetType="{x:Type c1:C1DropDown}">

 <Setter Property="Background" Value="Red" />

 </Style>

 </Grid.Resources>

 <c1:C1DropDown Height="30" HorizontalAlignment="Center"

Name="C1DropDown1" VerticalAlignment="Center" Width="100" />

</Grid>

This would set the background of the control to be the color red as in the following image:

All C1DropDown controls in the grid would also appear red; C1DropDown controls outside of the Grid would

not appear red. This is what is meant by implicit styles – the style is assigned to all controls of a particular type.
Inherited controls would also inherit the style.

Silverlight, however, does not support implicit styles. In Silverlight you could add the style to the Grid’s resources
similarly:

<Grid.Resources>

 <Style x:Key="DropDownStyle" TargetType="c1:C1DropDown">

 <Setter Property="Background" Value="Red" />

 </Style>

</Grid.Resources>

But the Silverlight C1DropDown control would not be styled unless the style was explicitly set, as in the following
example:

http://www.codeplex.com/Silverlight

36

<c1:C1DropDown Height="30" HorizontalAlignment="Center" Name="C1DropDown1"

VerticalAlignment="Center" Width="100" Style="{StaticResource

DropDownStyle}"/>

While this is easy enough to set on one control, if you have several controls it can be tedious to set the style on

each one. That's where the ImplicitStyleManager comes in. See Using the ImplicitStyleManager (page 38) for
more information.

Using the ImplicitStyleManager

The ImplicitStyleManager lets you set styles implicitly in Silverlight as you might in WPF. You can find the

ImplicitStyleManger in the System.Windows.Controls.Theming.Toolkit.dll assembly installed with the
Silverlight Toolkit.

To use the ImplicitStyleManager add a reference in your project to the

System.Windows.Controls.Theming.Toolkit.dll assembly and add its namespace to the initial UserControl tag

as in the following markup:

<UserControl

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:c1="clr-

namespace:C1.Silverlight;assembly=C1.Silverlight" xmlns:theming="clr-

namespace:System.Windows.Controls.Theming;assembly=System.Windows.Controls.Th

eming.Toolkit" x:Class="C1Theming.MainPage" Width="640" Height="480">

Once you've added the reference and namespace you can use the ImplicitStyleManager in your application. For
example, in the following markup a style is added and implicitly implemented:

<Grid x:Name="LayoutRoot" Background="White"

theming:ImplicitStyleManager.ApplyMode="OneTime">

 <Grid.Resources>

 <Style TargetType="c1:C1DropDown">

 <Setter Property="Background" Value="Red" />

 </Style>

 </Grid.Resources>

 <StackPanel HorizontalAlignment="Center" VerticalAlignment="Center">

 <c1:C1DropDown Margin="5" Content="C1DropDown" Height="30"

Width="100"/>

 </StackPanel>

</Grid>

Applying Themes to Controls

You can easily customize your application, by applying one of the built-in themes to your ComponentOne
Silverlight control. Each of the built-in themes is based on a Silverlight Toolkit theme. For information about each
of the built-in themes, see Available Themes (page 30). In this example, you’ll add the RainierOrange theme to the

C1DropDown control on a page.

To apply the theme, complete the following steps:

1. In Visual Studio, select File | New Project.

2. In the New Project dialog box, select the language in the left pane and in the right-pane select Silverlight

Application. Enter a Name and Location for your project and click OK.

3. In the New Silverlight Application dialog box, leave the default settings and click OK.

 37

A new application will be created and should open with the MainPage.xaml file displayed in XAML
view.

4. Place the mouse cursor between the <Grid> and </Grid> tags in XAML view.

You will add the theme and control to the Grid in the next steps.

5. Navigate to the Visual Studio Toolbox and double-click on the C1ThemeRanierOrange icon to declare

the theme. The theme's namespace will be added to the page and the theme's tags will be added to the
Grid in XAML view. The markup will appear similar to the following:

<UserControl xmlns:my="clr-

namespace:C1.Silverlight.Theming.RainierOrange;assembly=C1.Silverlight.

Theming.RainierOrange" x:Class="C1Silverlight.MainPage"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480">

 <Grid x:Name="LayoutRoot">

<my:C1ThemeRainierOrange></my:C1ThemeRainierOrange>

 </Grid>

</UserControl>

Any controls that you add within the theme's tags will now be themed.

6. Place your cursor between the <my:C1ThemeRanierOrange> and </my:C1ThemeRanierOrange>

tags.

7. In the Toolbox, double-click the C1DropDown icon to add the control to the project. The C1.Silverlight

namespace will be added to the page and the control's tags will be added within the theme's tags in XAML
view. The markup will appear similar to the following:

<UserControl xmlns:c1="clr-

namespace:C1.Silverlight;assembly=C1.Silverlight"

xmlns:my="clr-

namespace:C1.Silverlight.Theming.RainierOrange;assembly=C1.Silverlight.

Theming.RainierOrange" x:Class="C1Silverlight.MainPage"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480">

 <Grid x:Name="LayoutRoot">

<my:C1ThemeRainierOrange>

 <c1:C1DropDown Width="100" Height="30"></c1:C1DropDown>

</my:C1ThemeRainierOrange>

 </Grid>

</UserControl>

What You’ve Accomplished

Run your project and observe that the C1DropDown control now appears in the RainierOrange theme. Note that

you can only set the Content property on the theme once, so to theme multiple controls using this method you will
need to add a panel, for example a Grid or StackPanel, within the theme and then add multiple controls within the
panel.

You can also use the ImplicitStyleManager to theme all controls of a particular type. For more information, see
Using the ImplicitStyleManager (page 38).

38

Applying Themes to an Application

The following topic details one method of applying a theme application-wide in Visual Studio. In this topic you'll
add a class to your application that initializes a built-in theme. You'll then apply the theme to the MainPage of

your application.

To apply the theme, complete the following steps:

1. In Visual Studio, select File | New Project.

2. In the New Project dialog box, select the language in the left pane and in the right-pane select Silverlight

Application. Enter a Name and Location for your project and click OK.

3. In the New Silverlight Application dialog box, leave the default settings and click OK.

A new application will be created and should open with the MainPage.xaml file displayed in XAML
view.

4. In the Solution Explorer, right-click the project and choose Add Reference.

5. In the Add Reference dialog box choose the C1.Silverlight.Theming and

C1.Silverlight.Theming.RainierOrange assemblies and click OK.

6. In the Solution Explorer, right-click the project and select Add | New Item.

7. In the Add New Item dialog box, choose Class from the templates list, name the class "MyThemes", and

click the Add button to create and a new class. The newly created MyThemes class will open.

8. Add the following import statements to the top of the class:

 Visual Basic
Imports C1.Silverlight.Theming

Imports C1.Silverlight.Theming.RainierOrange

 C#
using C1.Silverlight.Theming;

using C1.Silverlight.RainierOrange;

9. Add code to the class so it appears like the following:

 Visual Basic
Public Class MyThemes

 Private _myTheme As C1Theme = Nothing

 Public ReadOnly Property MyTheme() As C1Theme

 Get

 If _myTheme Is Nothing Then

 _myTheme = New C1ThemeRainierOrange()

 End If

 Return _myTheme

 End Get

 End Property

End Class

 C#
public class MyThemes

{

 private static C1Theme _myTheme = null;

 public static C1Theme MyTheme

 {

 get

 {

 if (_myTheme == null)

 _myTheme = new C1ThemeRainierOrange();

 39

 return _myTheme;

 }

 }

}

10. In the Solution Explorer, double-click the App.xaml.vb or App.xaml.cs file.

11. Add the following import statement to the top of the file, where ProjectName is the name of your

application:

 Visual Basic
Imports ProjectName

 C#
using ProjectName;

12. Add code to the Application_Startup event of the App.xaml.vb or App.xaml.cs file so it appears like the

following:

 Visual Basic
Private Sub Application_Startup(ByVal o As Object, ByVal e As

StartupEventArgs) Handles Me.Startup

 Dim MyMainPage As New MainPage()

 Dim themes As New MyThemes

 themes.MyTheme.Apply(MyMainPage)

 Me.RootVisual = MyMainPage

End Sub

 C#
private void Application_Startup(object sender, StartupEventArgs e)

{

 MainPage MyMainPage = new MainPage();

 MyThemes.MyTheme.Apply(MyMainPage);

 this.RootVisual = MyMainPage;

}

Now any control you add to the MainPage.xaml file will automatically be themed.

13. Return to the MainPage.xaml file and place the mouse cursor between the <Grid> and </Grid> tags

in XAML view.

14. In the Toolbox, double-click the C1DropDown icon to add the control to the project.

15. Update the control's markup so it appears like the following:
<c1:C1DropDown Width="100" Height="30"></c1:C1DropDown>

What You’ve Accomplished

Run your project and observe that the C1DropDown control now appears in the RainierOrange theme. To

change the theme chosen, now all you would need to do is change the theme in the MyThemes class.

For example, to change to the ExpressionDark theme:

1. Add a reference to the C1.Theming.Silverlight.ExpressionDark.dll assembly.

2. Open the MyThemes class in your project and add the following import statements to the top of the class:

 Visual Basic
Imports C1.Silverlight.Theming.ExpressionDark

 C#
using C1.Silverlight.Theming.ExpressionDark;

3. Update code in the class so it appears like the following:

40

 Visual Basic
Public Class MyThemes

 Private _myTheme As C1Theme = Nothing

 Public ReadOnly Property MyTheme() As C1Theme

 Get

 If _myTheme Is Nothing Then

 _myTheme = New C1ThemeExpressionDark()

 End If

 Return _myTheme

 End Get

 End Property

End Class

 C#
public class MyThemes

{

 private static C1Theme _myTheme = null;

 public static C1Theme MyTheme

 {

 get

 {

 if (_myTheme == null)

 _myTheme = new C1ThemeExpressionDark();

 return _myTheme;

 }

 }

}

Note that the above steps apply the theme to the MainPage.xaml file. To apply the theme to additional pages, you
would need to add the following code to each page:

 Visual Basic
Dim themes As New MyThemes

themes.MyTheme.Apply(MyMainPage)

 C#
MyThemes.MyTheme.Apply(LayoutRoot);

The theme will then be applied to the page. So, you only have to change one line of code to the class to change the

theme, and you only have to add one line of code to each page to apply the theme.

ComponentOne ClearStyle Technology

ComponentOne ClearStyle™ technology is a new, quick and easy approach to providing Silverlight and WPF
control styling. ClearStyle allows you to create a custom style for a control without having to deal with the hassle
of XAML templates and style resources.

Currently, to add a theme to all standard Silverlight controls, you must create a style resource template. In
Microsoft Visual Studio this process can be difficult; this is why Microsoft introduced Expression Blend to make
the task a bit easier. Having to jump between two environments can be a bit challenging to developers who are not
familiar with Blend or do not have the time to learn it. You could hire a designer, but that can complicate things

when your designer and your developers are sharing XAML files.

That's where ClearStyle comes in. With ClearStyle the styling capabilities are brought to you in Visual Studio in
the most intuitive manner possible. In most situations you just want to make simple styling changes to the controls
in your application so this process should be simple. For example, if you just want to change the row color of your
data grid this should be as simple as setting one property. You shouldn't have to create a full and complicated-
looking template just to simply change a few colors.

 41

How ClearStyle Works

Each key piece of the control's style is surfaced as a simple color property. This leads to a unique set of style

properties for each control. For example, a Gauge has PointerFill and PointerStroke properties, whereas a

DataGrid has SelectedBrush and MouseOverBrush for rows.

Let's say you have a control on your form that does not support ClearStyle. You can take the XAML resource
created by ClearStyle and use it to help mold other controls on your form to match (such as grabbing exact colors).
Or let's say you'd like to override part of a style set with ClearStyle (such as your own custom scrollbar). This is
also possible because ClearStyle can be extended and you can override the style where desired.

ClearStyle is intended to be a solution to quick and easy style modification but you're still free to do it the old
fashioned way with ComponentOne's controls to get the exact style needed. ClearStyle does not interfere with

those less common situations where a full custom design is required.

 43

Key Features
ComponentOne DataGrid for Silverlight includes several key features, such as:

 Fully Interactive Grid

Enhance the end-user experience by creating a fully interactive grid. DataGrid for Silverlight has many

built-in interactive features such as column resizing and reordering, editing, sorting, filtering, grouping,
freezing, and selecting. See Run-time Interaction (page 90) for more information.

 Data Grouping and Totals

DataGrid for Silverlight supports Outlook-style grouping. Simply drag a column header to the area above
the grid to group the data. Expandable and collapsible nodes are automatically generated. You can also

show calculated aggregate functions or totals in grouped header rows. See Grouping Columns (page 98)
for details.

 Excel-like Filtering

By default, DataGrid for Silverlight supports Excel-like filtering. This type of filtering features a drop-
down menu on each column allowing users to create a filter condition. See Filtering Columns (page 95)
for more information.

 High Performance

DataGrid for Silverlight utilizes both row and column recycling (UI Virtualization) to achieve optimal
performance when handling large data sets.

 Several Built-in Column Types

DataGrid for Silverlight provides many built-in column editors that cover all of the common data types.

The built-in editors include text, check box, DateTime picker, combo box and images. You can also
choose from a selection of custom column editors including masked text, hyperlink, multi-line text and a
color picker. See Column Types (page 59) for details.

 RowDetails and Hierarchical Support

DataGrid also supports a RowDetails template for embedding UIElements inside a collapsible section of

each row. For example, just embed another DataGrid and you can create a master-detail grid for
displaying hierarchical data. For more information, see Adding Row Details (page 72).

 Top and Bottom Row Templates

With DataGrid for Silverlight's Top and Bottom row templates you can easily create and add custom
rows to the grid. For example, you can design your own filter or total rows and embed any UIElements
inside.

 Multiple Selection Modes

Give end-users all of the following cell selection options: single cell, single row, single column, single

range, multi-row, multi-column, and multi-range. With DataGrid for Silverlight's clipboard support, end-
users can then easily paste selected cells into any text editor, such as Microsoft Excel.

 New Row

Allow users to add new rows to DataGrid for Silverlight by displaying an empty new row at either the
top or bottom of the grid. See Adding Rows to the Grid (page 102) and Setting New Row Visibility (page
85) for details.

 Custom Rows and Columns

44

Design your own data template for each DataGrid row and create composite columns which can combine
data from multiple data fields.

 Easily Change Colors with ClearStyle

DataGrid for Silverlight supports ComponentOne's new ClearStyle™ technology that allows you to
easily change control colors without having to change control templates. With just setting a few color
properties you can quickly style the entire grid. For details, see C1DataGrid ClearStyle (page 87).

DataGrid for Silverlight Quick Start
The following quick start guide is intended to get you up and running with ComponentOne DataGrid for

Silverlight. In this quick start you'll create a new project in Visual Studio, add DataGrid for Silverlight to your
application, and bind it to a data source. You'll then customize the grid's appearance and behavior and run the grid
application to observe run-time interactions.

Step 1 of 4: Creating a Silverlight Application
In this step you'll begin in Visual Studio to create a Silverlight grid application using ComponentOne DataGrid

for Silverlight. You'll create a new Silverlight project and add the C1DataGrid control to your application.

To set up your project and add a C1DataGrid control to your application, complete the following steps:

1. In Visual Studio, select File | New | Project.

2. In the New Project dialog box, select a language in the left pane, and in the templates list select

Silverlight Application. Enter a Name for your project and click OK. The New Silverlight Application
dialog box will appear.

3. Click OK to accept default settings, close the New Silverlight Application dialog box, and create your

project. The MainPage.xaml file should open.

4. In the Solution Explorer, right-click the project name and choose Add Reference. In the Add Reference

dialog box, locate and select the C1.Silverlight.DataGrid assembly and click OK to add reference to your

project.

5. Add the XAML namespace to the UserControl tag with the following markup:

xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml".

The namespaces will now appear similar to the following:
<UserControl x:Class="C1DataGrid.MainPage"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml"

mc:Ignorable="d" d:DesignHeight="300" d:DesignWidth="400">

This is a unified namespace that will enable you to work with most ComponentOne WPF or Silverlight

controls without adding multiple namespaces.

6. Add the <c1:C1DataGrid x:Name="c1dg"></c1grid:C1DataGrid> tag within the Grid tags on

the page to add the C1DataGrid control to the application.

The XAML will appear similar to the following:
<Grid x:Name="LayoutRoot" Background="White">

 <c1:C1DataGrid x:Name="c1dg"></c1grid:C1DataGrid>

</Grid>

 45

This will add a C1DataGrid control named "c1dg" to the application. By giving the control a unique

identifier, you'll be able to access the C1DataGrid control in code.

 What You've Accomplished

You've successfully created a basic grid application. In the next step you'll add a XML data source to your project
and bind the grid to a data source.

Step 2 of 4: Binding the Grid to a Data Source
In the last step you set up the grid application, but the grid currently contains no data – if you run the application
now you'll see a blank grid. In this step you'll continue in Visual Studio by adding an XML data source to your
project and binding the grid to the data source.

To add a data source and bind the grid in Visual Studio, complete the following steps:

1. In the Solution Explorer window, right-click the project and select Add | New Item.

2. In the Add New Item dialog box, select XML File from the list of installed templates, name the file

"Products.xml", and click Add to close the dialog box.

The Products.xml file should now be included in your project, and should have opened automatically.

3. Replace the existing text in the Products.xml file with the following XML markup and save the file:

 XML to add:
<?xml version="1.0" encoding="utf-8" ?>

<Products>

 <Product Name="Chai" Category="Beverages" Unit="10 boxes x 20 bags"

Price="18" />

 <Product Name="Chang" Category="Beverages" Unit="24 - 12 oz bottles"

Price="19" />

 <Product Name="Aniseed Syrup" Category="Condiments" Unit="12 - 550 ml

bottles" Price="10" />

 <Product Name="Chef Anton's Cajun Seasoning" Category="Condiments"

Unit="48 - 6 oz jars" Price="22" />

 <Product Name="Chef Anton's Gumbo Mix" Category="Condiments" Unit="36

boxes" Price="21.35" />

 <Product Name="Grandma's Boysenberry Spread" Category="Condiments"

Unit="12 - 8 oz jars" Price="25" />

 <Product Name="Uncle Bob's Organic Dried Pears" Category="Produce"

Unit="12 - 1 lb pkgs." Price="30" />

 <Product Name="Northwoods Cranberry Sauce" Category="Condiments"

Unit="12 - 12 oz jars" Price="40" />

 <Product Name="Mishi Kobe Niku" Category="Meat/Poultry" Unit="18 -

500 g pkgs." Price="97" />

 <Product Name="Ikura" Category="Seafood" Unit="12 - 200 ml jars"

Price="31" />

 <Product Name="Queso Cabrales" Category="Dairy Products" Unit="1 kg

pkg." Price="21" />

 <Product Name="Queso Manchego La Pastora" Category="Dairy Products"

Unit="10 - 500 g pkgs." Price="38" />

 <Product Name="Konbu" Category="Seafood" Unit="2 kg box" Price="6" />

 <Product Name="Tofu" Category="Produce" Unit="40 - 100 g pkgs."

Price="23.25" />

 <Product Name="Genen Shouyu" Category="Condiments" Unit="24 - 250 ml

bottles" Price="15.5" />

 <Product Name="Pavlova" Category="Condiments" Unit="32 - 500 g boxes"

Price="17.45" />

46

 <Product Name="Alice Mutton" Category="Meat/Poultry" Unit="20 - 1 kg

tins" Price="39" />

 <Product Name="Carnarvon Tigers" Category="Seafood" Unit="16 kg pkg."

Price="62.5" />

 <Product Name="Teatime Chocolate Biscuits" Category="Confections"

Unit="10 boxes x 12 pieces" Price="9.2" />

 <Product Name="Sir Rodney's Marmalade" Category="Confections"

Unit="30 gift boxes" Price="81" />

 <Product Name="Sir Rodney's Scones" Category="Confections" Unit="24

pkgs. x 4 pieces" Price="10" />

 <Product Name="Gustaf's Knäckebröd" Category="Grains/Cereals"

Unit="24 - 500 g pkgs." Price="21" />

 <Product Name="Tunnbröd" Category="Grains/Cereals" Unit="12 - 250 g

pkgs." Price="9" />

 <Product Name="Guaraná Fantástica" Category="Beverages" Unit="12 -

355 ml cans" Price="4.5" />

 <Product Name="NuNuCa Nuß-Nougat-Creme" Category="Confections"

Unit="20 - 450 g glasses" Price="14" />

</Products>

This will add data taken from the Products table of the standard Microsoft Northwind database.

4. Right-click the project and select Add Reference. In the Add Reference dialog box, locate

System.Xml.Linq and click OK to add the reference.

5. Choose MainPage.xaml, right-click the page, and select View Code in the context menu to open the

Code Editor.

6. At the top of the Code Editor, add the following code to import namespaces:

 Visual Basic
Imports System.Xml.Linq

Imports C1.Silverlight.DataGrid

 C#
using System.Xml.Linq;

using C1.Silverlight.DataGrid;

7. Replace the existing code with the following code to initialize the data source, and bind the

C1DataGrid.ItemsSource property to the XML data source:

 Visual Basic
Partial Public Class MainPage

 Inherits UserControl

 Public Sub New()

 InitializeComponent()

 LoadData()

 End Sub

 ' Create the Product class.

 Public Class Product

 Private _Name As String

 Public Property Name() As String

 Get

 Return _Name

 End Get

 Set(ByVal value As String)

 _Name = value

 End Set

 End Property

 Private _Category As String

 47

 Public Property Category() As String

 Get

 Return _Category

 End Get

 Set(ByVal value As String)

 _Category = value

 End Set

 End Property

 Private _Unit As String

 Public Property Unit() As String

 Get

 Return _Unit

 End Get

 Set(ByVal value As String)

 _Unit = value

 End Set

 End Property

 Private _Price As String

 Public Property Price() As String

 Get

 Return _Price

 End Get

 Set(ByVal value As String)

 _Price = value

 End Set

 End Property

 End Class

 Private Sub LoadData()

 ' Initialize the XML data source.

 Dim ProductsDoc As XDocument = XDocument.Load("Products.xml")

 Dim data As IEnumerable(Of Product) = (From Product In

ProductsDoc.Descendants("Product") Select New Product With {.Name =

Product.Attribute("Name").Value, .Category =

Product.Attribute("Category").Value, .Unit =

Product.Attribute("Unit").Value, .Price =

Product.Attribute("Price").Value}).ToList

 ' Bind the C1DataGrid control to the data source.

 c1dg.ItemsSource = data

 End Sub

End Class

 C#
public MainPage()

{

 InitializeComponent();

 LoadData();

}

// Create the Product class.

public class Product

{

 public string Name { get; set; }

 public string Category { get; set; }

 public string Unit { get; set; }

 public string Price { get; set; }

}

private void LoadData()

{

48

 // Initialize the XML data source.

 XDocument ProductsDoc = XDocument.Load("Products.xml");

 List<Product> data = (from Product in ProductsDoc.Descendants(

"Product")

 select new Product

 {

 Name = Product.Attribute("Name").Value,

 Category = Product.Attribute("Category").Value,

 Unit = Product.Attribute("Unit").Value,

 Price = Product.Attribute("Price").Value

 }

).ToList();

 // Bind the C1DataGrid control to the data source.

 c1dg.ItemsSource = data;

}

 What You've Accomplished

If you save and run your application you'll observe that the grid is now populated with data from the Products.xml
file:

You've successfully bound DataGrid for Silverlight's C1DataGrid control to an XML data source. In the next

step you'll customize the appearance and behavior of the C1DataGrid control.

Step 3 of 4: Customizing the Grid's Appearance and Behavior
In the previous steps you worked in Visual Studio to create a new Silverlight project and bind DataGrid for

Silverlight to a data source. In this step you'll customize the grid application's appearance and behavior.

To customize DataGrid for Silverlight, complete the following steps:

1. Return to the MainPage.xaml file. In this example you'll be customizing the grid in XAML rather than
code.

2. Locate the <c1grid:C1DataGrid> tag in the XAML window and add CanUserGroup="True" to it.

This will enable the grouping area of the grid.

The XAML will now look similar to the following:
<c1grid:C1DataGrid x:Name="c1dg" CanUserGroup="True">

 49

3. Add NewRowVisibility="Top" to the <c1grid:C1DataGrid> tag in the XAML window. This

will move the add new row to the top of the grid.

The XAML will now look similar to the following:
<c1grid:C1DataGrid x:Name="c1dg" CanUserGroup="True"

NewRowVisibility="Top">

4. Add VerticalScrollBarVisibility="Visible"

HorizontalScrollBarVisibility="Visible" to the <c1grid:C1DataGrid> tag. This will

ensure that the horizontal and vertical scroll bars are always visible.

The XAML will now look similar to the following:
<c1grid:C1DataGrid x:Name="c1dg" CanUserGroup="True"

NewRowVisibility="Top" VerticalScrollBarVisibility="Visible"

HorizontalScrollBarVisibility="Visible">

5. Add VerticalGridLinesBrush="Aquamarine" to the <c1grid:C1DataGrid> tag. This

changes the color of the vertical grid lines.

The XAML will now look similar to the following:
<c1grid:C1DataGrid x:Name="c1dg" CanUserGroup="True"

NewRowVisibility="Top" VerticalScrollBarVisibility="Visible"

HorizontalScrollBarVisibility="Visible"

VerticalGridLinesBrush="Aquamarine">

 What You've Accomplished

Save and run your application and observe that you've changed the appearance of the grid and the columns that
are displayed:

You've successfully customized the appearance and behavior of your grid. In the next step you'll explore some of
the run-time interactions that are possible in your grid application.

Step 4 of 4: Running the Grid Application
Now that you've created a grid application, bound the grid to a data source, and customized the grid's appearance

and behavior, the only thing left to do is run your application. To observe ComponentOne DataGrid for

Silverlight's run-time interactions, complete the following steps:

1. Select Debug | Start Debugging to run your application.

50

2. Click the Name header once to sort the grid by product name. Notice that a sort indicator glyph appears to
indicate the column being sorted and the direction of the sort.

You can sort multiple columns by holding the CTRL key while clicking another column.

3. Re-order the columns by clicking the Category column header and dragging it in front of the Name
column header:

The Category column will now appear before the Name column.

4. Resize a column, here the Name column, by clicking the right edge of the column and dragging the edge to

a new location.

 51

5. Filter the content of a column by clicking the drop-down arrow in the Category header, entering "bev" in

the filter text box, and pressing the Filter button, so that only items beginning with that string appear:

Notice that the drop-down arrow icon is replaced with a filter icon, indicating that the column is filtered.
Note that the vertical scroll bar remains visible, though content cannot be scrolled vertically. This is

because you set the VerticalScrollBarVisibility property to Visible.

6. Clear the filter by clicking the Filter icon in the Category column header and clicking the Clear button:

52

7. Drag the Category header to the grouping area to group the grid by category:

You can repeat this with additional columns to group by multiple criteria.

8. Click the X button in the Category column header in the grouping area to no longer group columns by

category.

9. Add new data to the grid by clicking in the new row and typing content:

 53

Click away from the row or press ENTER for the content you added to be included in the grid.

10. To edit the contents of a cell, click once on a cell, type text to add or change content, and press the
ENTER key:

Notice that a pencil icon appears in the row indicator column, specifying that a cell in that row is in edit
mode.

Congratulations! You've completed the DataGrid for Silverlight quick start and created a DataGrid for

Silverlight grid application, bound the grid to a data source, customized the appearance of the grid, and viewed

some of the run-time capabilities of your grid application.

 55

Working with DataGrid for Silverlight
ComponentOne DataGrid for Silverlight allows you to select, edit, add, delete, filter, group, and sort the items

displayed in the table generated by the C1DataGrid component.

The columns of a table created using the C1DataGrid component correspond to the fields in a data source. You

can control which columns are displayed, the types of columns to display, and the appearance of the whole table.

Using the AutoGenerateColumns property, you can generate columns automatically, manually, or both. Setting

this property to True (default) creates columns automatically when the ItemsSource property is set. Setting this

property to False allows you to specify the columns to display, which are added to the Columns collection.

Note: By default explicitly declared columns are rendered first, followed by automatically generated columns. You
can change the order of rendered columns by setting the DisplayIndex property of the column. Automatically

generated columns are now added to the Columns collection.

Class Hierarchy
The following list summarizes the class relationships between the more important classes included in the DataGrid

for Silverlight:

 C1.Silverlight.DataGrid.C1DataGrid : System.Windows.Controls.Control
Encapsulates most of the grid functionality. This component is shown in Visual Studio's Toolbox.

 C1.Silverlight.DataGrid.DataGridColumn : System.Object

Represents a column in the grid.

 C1.Silverlight.DataGridColumnCollection : System.Object
Represents the collection of columns of the data grid.

 C1.Silverlight.DataGrid.DataGridColumnHeaderPresenter : System.Windows.Controls.Control

Content control that represent the header of a column; this control contains the sort, resize and filter
elements.

 C1.Silverlight.DataGrid.DataGridRow : System.Object
Represents a row in the grid.

 C1.Silverlight.DataGrid.DataGridRowCollection : System.Object
Collection of rows.

 C1.Silverlight.DataGrid.DataGridCell : System.Object
Represents an individual grid cell.

Data Binding
ComponentOne DataGrid for Silverlight's C1DataGrid control can be bound to any object that implements the

System.Collections.IEnumerable interface (such as XmlDataProvider, ObjectDataProvider, DataSet,

DataView, and so on). You can use the C1DataGrid.ItemsSource property to bind the C1DataGrid.

To bind the grid, simply set the ItemsSource property to an IEnumerable implementation. Each row in the data
grid will be bound to an object in the data source, and each column in the data grid will be bound to a property of
the data object.

Note that in order for the C1DataGrid user interface to update automatically when items are added to or removed

from the source data, the control must be bound to a collection that implements INotifyCollectionChanged, such

as an ObservableCollection<(Of <(T>)>).

56

See WCF RIA Services Data Binding (page 58) and Binding the Grid to a WCF RIA Services Data Source (page
126) for information about binding the grid to an RIA Services data source. See Binding the Grid to an RSS Feed
(page 112) and Binding the Grid to a Web Service (page 105) for data binding examples. For steps on binding a

C1DataGrid control to an XML data source, see the DataGrid for Silverlight Quick Start (page 46).

WCF RIA Services Data Binding

ComponentOne DataGrid for Silverlight's C1DataGrid control support direct binding to the WCF RIA services

DomainDataSoure. There are two ways of doing so codelessly in XAML. You can bind directly to the

DomainDataSource which works but involve some loss in filtering functionality, or you can use an Adaptor class
to bind the grid.

You can bind the grid directly to the DomainDataSource, using XAML markup similar to the following:

<ria:DomainDataSource x:Name="_myDataSource" QueryName="GetProducts"

PageSize="8">

 <ria:DomainDataSource.DomainContext>

 <local:NorthwindContext/>

 </ria:DomainDataSource.DomainContext>

</ria:DomainDataSource>

<c1data:C1DataGrid x:Name="_dataGrid" ItemsSource="{Binding Data,

ElementName=_myDataSource}">

You can bind the grid this way and it will work, but you will lose C1DataGrid's built-in filtering functionality

because RIA services use a different filtering approach than standard CollectionView.

To retain all functionality you will need an additional class to "translate" the filtering information so RIA services
can perform filtering; that’s when the C1RiaAdapter class comes into play. It performs the translations required for

the C1DataGrid filtering to work with RIA.

You can use XAML markup similar to the following:

Indirect binding to DomainDataSource (binding through Adapter class)

<adapter:C1RiaAdapter x:Name="_adapter" DataGrid="{Binding

ElementName=_dataGrid}">

 <ria:DomainDataSource x:Name="_myDataSource"

QueryName="GetProducts" PageSize="8">

 <ria:DomainDataSource.DomainContext>

 <local:NorthwindContext/>

 </ria:DomainDataSource.DomainContext>

 </ria:DomainDataSource>

</adapter:C1RiaAdapter>

<c1data:C1DataGrid x:Name="_dataGrid" ItemsSource="{Binding Data,

ElementName=_adapter}">

If you bind the grid this way, you will get filtering support out of the box. Of course, if you do not need filtering

support, you can always bind the grid directly without using C1RiaAdapter.

For an example, see the Binding the Grid to a WCF RIA Services Data Source (page 126) topic.

 57

Defining Columns
You can use ComponentOne DataGrid for Silverlight's Columns collection to programmatically add, insert,
remove, and change any columns in the control at run time. You can also specify columns in XAML with or
without automatically generating columns.

Creating your own columns enables you to use additional column types, such as the DataGridTemplateColumn

type or custom column types. The DataGridTemplateColumn type provides an easy way to create a simple

custom column. The CellTemplate and CellEditingTemplate properties enable you to specify content templates
for both display and editing modes.

Generating Columns

By default, the C1DataGrid control generates columns automatically, based on the type of data, when you set the

ItemsSource property. The generated columns are of type DataGridCheckBoxColumn for bound Boolean (and

nullable Boolean) properties, and of type DataGridTextColumn for bound string data,

DataGridComboBoxColumn for bound enum data, DataGridDateTimeColumn for bound date/time data, and

DataGridNumericColumn for bound numeric data. Bound undefined data is displayed in a

DataGridBoundColumn type column. If a property does not have a String or numeric value type, the generated

text box columns are read-only and display the data object's ToString value.

You can prevent automatic column generation by setting the AutoGenerateColumns property to False. This is
useful if you want to create and configure all columns explicitly. Alternatively, you can let the data grid generate

columns, but handle the AutoGeneratingColumn event to customize columns after creation. To rearrange the

display order of the columns, you can set the DisplayIndex property for individual columns.

Column Types

ComponentOne DataGrid for Silverlight's C1DataGrid control provides a flexible way to display a collection of

data in rows and columns by providing many built-in column editors that cover all of the common data types.
Built-in column types include:

Column Type Description

DataGridBoundColumn A column that can bind to a property in the grid's
data source. This is the default column type for

bound undefined data.

DataGridTextColumn A text column. This is the default column type for

bound string data.

DataGridCheckBoxColumn A check box column. This is the default column type

for bound Boolean data.

DataGridComboBoxColumn A combo box column. This is the default column type

for bound enumeration type data.

DataGridDateTimeColumn A date time column (see below for an image). This is

the default column type for bound date/time data.

DataGridImageColumn An image column.

DataGridNumericColumn A numeric column. This is the default column type

for bound numeric data (the format will be inferred
from the type. For example, if the type is int the

format will not contain decimal places).

DataGridTemplateColumn A template column for hosting custom content.

CustomColumns A custom column. See the C1DataGrid_Demo sample
for examples ofcustom columns like a Composite

Column, Color Column, Gif Column, Hyperlink
Column, Masked Text Column, Multi line Text

58

Column, and so on.

These column types can provide built-in input validation; for example the DataGridDateTimeColumn column
includes a calendar for selecting a date:

Explicitly Defining Columns

If you choose, you can explicitly define columns. If the AutoGenerateColumns property is False only the columns

you have defined will appear in the grid.

In Microsoft Expression Blend, you can use the DataGridColumn Collection Editor to define columns in your

grid. Select the C1DataGrid control, and in the Properties window select the ellipsis button next to the

Columns(Collection) item in the Miscellaneous group. The DataGridColumn Collection Editor dialog box will

appear:

 59

You can also define custom columns in the grid in XAML by using the Columns collection.

For example:

 XAML
<c1:C1DataGrid x:Name="grid" Grid.Row="1" Grid.ColumnSpan="2" Margin="5"

AutoGeneratingColumn="grid_AutoGeneratingColumn" CanUserAddRows="False"

ColumnHeaderHeight="30" >

 <c1:C1DataGrid.Columns>

 <!--

 Custom check box column.

 Adds a check box to the header and listens to its events.

 -->

 <c1:DataGridCheckBoxColumn Binding="{Binding Available,

Mode=TwoWay}" DisplayIndex="0" SortMemberPath="Available"

FilterMemberPath="Available" MinWidth="108" >

 <c1:DataGridColumn.Header>

 <StackPanel Orientation="Horizontal"

HorizontalAlignment="Left">

 <TextBlock Margin="6,0,6,0" VerticalAlignment="Center"

Text="Available"/>

 <CheckBox HorizontalAlignment="Left"

IsHitTestVisible="True" VerticalAlignment="Center" Grid.Column="1"

Checked="CheckBox_Checked" Unchecked="CheckBox_Checked"

Loaded="CheckBox_Loaded"/>

 </StackPanel>

 </c1:DataGridColumn.Header>

 </c1:DataGridCheckBoxColumn>

 <!--

 Custom "merged" column made with a DataGridTemplateColumn.

 You can also inherit from DataGridTemplateColumn and set

 this configuration in the constructor to make your XAML

60

 cleaner.

 -->

 <c1:DataGridTemplateColumn>

 <c1:DataGridTemplateColumn.Header>

 <local:MergedColumnEditor ControlMode="Header" />

 </c1:DataGridTemplateColumn.Header>

 <c1:DataGridTemplateColumn.CellTemplate>

 <DataTemplate>

 <local:MergedColumnEditor ControlMode="Cell" />

 </DataTemplate>

 </c1:DataGridTemplateColumn.CellTemplate>

 <c1:DataGridTemplateColumn.CellEditingTemplate>

 <DataTemplate>

 <local:MergedColumnEditor ControlMode="EditingCell" />

 </DataTemplate>

 </c1:DataGridTemplateColumn.CellEditingTemplate>

 </c1:DataGridTemplateColumn>

 </c1:C1DataGrid.Columns>

</c1:C1DataGrid>

Customizing Automatically Generated Columns

You can customize columns even if columns are automatically generated. If the AutoGenerateColumns property

is set to True and columns are automatically generated, you can customize how generated columns are displayed

in code by handling the C1DataGrid.AutoGeneratingColumn event.

Adding the AutoGeneratingColumn Event Handler

Complete the following steps to add the AutoGeneratingColumn event handler:

1. Switch to Code view and add an event handler for the AutoGeneratingColumn event, for example:

 Visual Basic
Private Sub C1DataGrid1_AutoGeneratingColumn(ByVal sender As

System.Object, ByVal e As

C1.Silverlight.DataGrid.DataGridAutoGeneratingColumnEventArgs) Handles

C1DataGrid1.AutoGeneratingColumn

 ' Add code here.

End Sub

 C#
private void C1DataGrid1_AutoGeneratingColumn(object sender,

C1.Silverlight.DataGrid.DataGridAutoGeneratingColumnEventArgs e)

{

 // Add code here.

}

2. Switch to Source view and add the event handler to instances of the C1DataGrid control, for example:
<c1:C1DataGrid x:Name="c1DataGrid1" AutoGenerateColumns="True"

AutoGeneratingColumn=" c1DataGrid1_AutoGeneratingColumn"></c1:C1DataGrid>

You can now add code to the AutoGeneratingColumn event handler to customize the appearance and behavior of
automatically generated columns. Below are examples of customizing column formatting and behavior.

Canceling Column Generation

You can cancel the generation of specific columns in the AutoGeneratingColumn event. For example, you can
use the following code to cancel the generation of Boolean columns in the grid:

 Visual Basic

 61

Private Sub C1DataGrid1_AutoGeneratingColumn(ByVal sender As

System.Object, ByVal e As

C1.Silverlight.DataGrid.DataGridAutoGeneratingColumnEventArgs) Handles

C1DataGrid1.AutoGeneratingColumn

 ' Cancel automatic generation of all Boolean columns.

 If e.Property.PropertyType Is GetType(Boolean) Then

 e.Cancel = True

 End If

End Sub

 C#
private void c1DataGrid1_AutoGeneratingColumn(object sender,

C1.Silverlight.DataGrid.DataGridAutoGeneratingColumnEventArgs e)

{

 // Cancel automatic generation of all Boolean columns.

 if (e.Property.PropertyType == typeof(bool))

 e.Cancel = true;

}

Changing a Column Header

In the AutoGeneratingColumn event you can change the text that appears in the header of automatically
generated columns. For example, you can change the "ProductName" column so that it appears with the "Name"
header using the following code:

 Visual Basic
Private Sub C1DataGrid1_AutoGeneratingColumn(ByVal sender As

System.Object, ByVal e As

C1.Silverlight.DataGrid.DataGridAutoGeneratingColumnEventArgs) Handles

C1DataGrid1.AutoGeneratingColumn

 ' Modify the header of the ProductName column.

 If e.Column.Header.ToString() = "ProductName" Then

 e.Header = "Name"

 End If

End Sub

 C#
private void c1DataGrid1_AutoGeneratingColumn(object sender,

C1.Silverlight.DataGrid.DataGridAutoGeneratingColumnEventArgs e)

{

 // Modify the header of the ProductName column.

 if (e.Column.Header.ToString() == "ProductName")

 e.Column.Header = "Name";

}

Preventing Column Interaction

Using the AutoGeneratingColumn event you can change how end users interact with specific generated columns.

For example, you can prevent users from moving read-only columns with the following code:

 Visual Basic
Private Sub C1DataGrid1_AutoGeneratingColumn(ByVal sender As

System.Object, ByVal e As

C1.Silverlight.DataGrid.DataGridAutoGeneratingColumnEventArgs) Handles

C1DataGrid1.AutoGeneratingColumn

 ' Modify the header of the ProductName column.

 If e.Column.IsReadOnly = True Then

 e.Column.CanUserMove = False

 End If

End Sub

62

 C#
private void c1DataGrid1_AutoGeneratingColumn(object sender,

C1.Silverlight.DataGrid.DataGridAutoGeneratingColumnEventArgs e)

{

 // Modify the header of the ProductName column.

 if (e.Column.IsReadOnly == true)

 e.Column.CanUserMove = false;

}

Creating Custom Columns
ComponentOne DataGrid for Silverlight supports creating specific behavior columns. For example you can
create a Hyperlink column, a GIF column, a Rich Text column, and so on.

By creating a custom column you'll be able to customize the cell content and editing content of all the cells
belonging to a column, you can even customize the header presenter of the column.

First, you should add a new class file where the custom column will be written, for example complete the
following steps:

1. Navigate to the Solution Explorer, right-click the project name and select Add│New Item.

2. In the Add New Item dialog box choose Class in the list of templates.

3. Name the class, for example "DataGridHyperlinkColumn", and click the Add button to add the class to
the project.

Once the file is created it must inherit from DataGridBoundColumn. Update the class so it appears similar to the
following:

 Visual Basic
Imports C1.Silverlight.DataGrid

Public Class DataGridHyperlinkColumn

 Inherits DataGridBoundColumn

End Class

 C#
using C1.Silverlight.DataGrid;

public class DataGridHyperlinkColumn : DataGridBoundColumn

{

}

Customizing Column Cell Content

In this section you'll find information about changing the UI element shown as the content of cells belonging to a
column when the cell is not in editing mode.

It’s important to note that cell content UI elements are recycled by the data grid; that means that this column could
potentially use UI elements created by other columns.

To implement custom cell content you'll need to override the following methods:

 GetCellContentRecyclingKey: Key used to store the cell content for future reuse in a shared pool.

Columns returning the same RecyclingKey will be candidates to share the same cell content instances.

 CreateCellContent: Creates the visual element that will be used to display the information inside a cell.

 BindCellContent: Initializes the cell content presenter. This method must set cellContent properties, the

SetBinding of the corresponding dependency property being "row.DataItem", the source which can be set

directly in the binding or in the DataContext of the cellContent.

 63

 UnbindCellContent: This method is called before the cell content is recycled.

In the implementation of a hyperlink column the methods might look similar to the example below. In the

following method a different key for this column is returned (the default key is typeof(TextBlock)), That means
this column will not share the cell content element with other columns (unless it would be another column which
returned the same key, but that's not likely to happen).

 Visual Basic
Public Overloads Overrides Function GetCellContentRecyclingKey(ByVal row

As DataGridRow) As Object

 Return (GetType(HyperlinkButton))

End Function

 C#
public override object GetCellContentRecyclingKey(DataGridRow row)

{

 return typeof(HyperlinkButton);

}

The CreateCellContent method will be called by the data grid if there is no recycled hyperlink. In this case a new

hyperlink will be created which will be used in the cell once the cell that contains the hyperlink is unloaded; the

hyperlink will be saved to be used in a future cell:

 Visual Basic
Public Overloads Overrides Function CreateCellContent(ByVal row As

DataGridRow) As FrameworkElement

 Return New HyperlinkButton()

End Function

 C#
public override FrameworkElement CreateCellContent(DataGridRow row)

{

 return new HyperlinkButton();

}

After the hyperlink is created or a recycled one is taken, the BindCellContent method will be called by the data grid
passing the hyperlink as a parameter. In this method you should set the properties of the hyperlink to bind it to the data

of the cell:

 Visual Basic
Public Overloads Overrides Sub BindCellContent(ByVal cellContent As

FrameworkElement, ByVal row As DataGridRow)

 Dim hyperlink = DirectCast(cellContent, HyperlinkButton)

 If Binding IsNot Nothing Then

 Dim newBinding As Binding = CopyBinding(Binding)

 newBinding.Source = row.DataItem

 hyperlink.SetBinding(HyperlinkButton.NavigateUriProperty,

newBinding)

 End If

 hyperlink.HorizontalAlignment = HorizontalAlignment

 hyperlink.VerticalAlignment = VerticalAlignment

End Sub

 C#
public override void BindCellContent(FrameworkElement cellContent,

DataGridRow row)

{

 var hyperlink = (HyperlinkButton)cellContent;

 if (Binding != null)

 {

64

 Binding newBinding = CopyBinding(Binding);

 newBinding.Source = row.DataItem;

 hyperlink.SetBinding(HyperlinkButton.NavigateUriProperty,

newBinding);

 }

 hyperlink.HorizontalAlignment = HorizontalAlignment;

 hyperlink.VerticalAlignment = VerticalAlignment;

}

Note that you can also set the data item as the data context of the hyperlink instead of setting it in the Source
property of the binding. For example:

 Visual Basic
Hyperlink.DataContext = row.DataItem

 C#
Hyperlink.DataContext = row.DataItem;

Although you will end up with the same result, this technique is does not perform as well as setting the binding
source property directly.

Adding Properties to a Custom Column

You may want to add properties to a column in order to set a specific behavior. Continuing with the hyperlink

column created in the previous topics, in this topic you'll add a property called TargetName. This property allows
the user to specify the name of the target window or frame where the page will open.

Complete the following steps:

1. Add the following code to create the TargetName property:

 Visual Basic
Private _TargetName As String

Public Property TargetName() As String

 Get

 Return _TargetName

 End Get

 Set(ByVal value As String)

 _TargetName = value

 End Set

End Property

 C#
public string TargetName { get; set; }

2. Once the property is created you'll propagate this to the hyperlink in the BindCellContent method:

 Visual Basic
Public Overloads Overrides Sub BindCellContent(ByVal cellContent As

FrameworkElement, ByVal row As DataGridRow)

 Dim hyperlink = DirectCast(cellContent, HyperlinkButton)

 If Binding IsNot Nothing Then

 Dim newBinding As Binding = CopyBinding(Binding)

 newBinding.Source = row.DataItem

 hyperlink.SetBinding(HyperlinkButton.NavigateUriProperty,

newBinding)

 End If

 hyperlink.HorizontalAlignment = HorizontalAlignment

 hyperlink.VerticalAlignment = VerticalAlignment

 hyperlink.TargetName = TargetName

End Sub

 65

 C#
public override void BindCellContent(FrameworkElement cellContent,

DataGridRow row)

{

 var hyperlink = (HyperlinkButton)cellContent;

 if (Binding != null)

 {

 Binding newBinding = CopyBinding(Binding);

 newBinding.Source = row.DataItem;

 hyperlink.SetBinding(HyperlinkButton.NavigateUriProperty,

newBinding);

 }

 hyperlink.HorizontalAlignment = HorizontalAlignment;

 hyperlink.VerticalAlignment = VerticalAlignment;

 hyperlink.TargetName = TargetName;

}

Tips

You may find the following tips helpful when adding properties to a custom column:

 Provide a constructor that takes PropertyInfo as parameter calling base(property) in order to

automatically set the Binding, SortMemberPath, FilterMemberPath and Header properties as well as

properties set using custom attributes. Currently supported attributes include: DisplayAttribute

(AutoGenerateFilter, Name, GroupName, Order), DisplayFormatAttribute, and EditableAttribute.

public DataGridHyperlinkColumn(PropertyInfo property) : base(property)

 You can set a converter in the binding to help you to manage scenarios where you need to use a column

bound to property source that is not the same type. Suppose you want to bind a numeric column against a
string property, this scenario will work correctly if you set a converter type which converts the string to a
double.

Creating Custom Rows
You may be able to solve several scenarios by creating custom rows like a new row, group row, filter row,
summary row, totals row, template row, and so on. Some of these rows are implemented internally and others are
provided as samples.

When creating a custom row you'll be able to change the following parts:

 Cells content

 Row presenter

 Row header presenter

See Customizing Row Cell Content (page 67) for more details.

Customizing Row Cell Content

This topic explains how to customize cell content. For example, suppose you wanted to build a filter row. You

could create a grid where the first row has a TextBox in each cell and when you type on it the grid is filtered by the
typed text as in the following image:

66

Adding a Class File

You would need to add a new class file where the custom row will be written. For example, complete the following
steps to add a new class file:

1. Navigate to the Solution Explorer, right-click the project name and select Add│New Item.

2. In the Add New Item dialog box choose Class in the list of available templates.

3. Name the class, for example "DataGridFilterRow", and click the Add button to add the class to the
project.

4. Update the class so it appears similar to the following:

 Visual Basic
Imports C1.Silverlight.DataGrid

Public Class DataGridFilterRow

 Inherits DataGridRow

End Class

 C#
using C1.Silverlight.DataGrid;

public class DataGridFilterRow : DataGridRow

{

}

This will update the class to inherit from DataGridRow. Once the file is created it must inherit from

DataGridRow.

Once you've added the class, you can use it to implement filtering in the grid.

Overriding Methods

The methods you would need to override to specify the cell content of custom row are very similar to those
exposed in custom columns. To implement custom cell content you'd need to override the following methods:

 HasCellPresenter: Determines whether a cell should exist for this row and the specified column.

 GetCellContentRecyclingKey: Key used to store the cell content for future reuse in a shared pool. Rows

returning the same RecyclingKey can share the same cell content instances.

 CreateCellContent: Creates a visual element that will be used to display information inside a cell in this
column.

 BindCellContent: Initializes the cell content presenter.

 UnbindCellContent: This method is called before the cell content is recycled.

In the filter row the HasCellPresenter method will return always true, because all columns will have a
corresponding cell. In other scenarios like a summary row, only the columns where there is an aggregate function
will have a cell.

 67

The GetCellContentRecyclingKey method will return typeof(TextBox), which allows recycling the text boxes,

and the CreateCellContent will create a new instance of it. Add the following code to

 Visual Basic
Protected Overrides Function GetCellContentRecyclingKey(column As

DataGridColumn) As Object

 Return GetType(TextBox)

End Function

Protected Overrides Function CreateCellContent(column As DataGridColumn)

As FrameworkElement

 Return New TextBox()

End Function

 C#
protected override object GetCellContentRecyclingKey(DataGridColumn

column)

{

 return typeof(TextBox);

}

protected override FrameworkElement CreateCellContent(DataGridColumn

column)

{

 return new TextBox();

}

Implementing Filtering

In the previous steps you added a TextBox in each cell, but these controls currently do not do anything; to
implement filtering complete the following steps:

1. Add the following code to the BindCellContent method:

 Visual Basic
Protected Overrides Sub BindCellContent(cellContent As

FrameworkElement, column As DataGridColumn)

 Dim filterTextBox = DirectCast(cellContent, TextBox)

 'If the column doesn't have a FilterMemberPath specified

 'it won't allow entering text in the TextBox;

 If String.IsNullOrEmpty(column.FilterMemberPath) Then

 filterTextBox.IsEnabled = False

 filterTextBox.Text = "Not available"

 Else

 filterTextBox.Text = ""

 filterTextBox.IsEnabled = True

 End If

 ' Handle TextChanged to apply the filter to the column.

 filterTextBox.TextChanged += New EventHandler(Of

TextChangedEventArgs)(filterTextBox_TextChanged)

End Sub

 C#
protected override void BindCellContent(FrameworkElement cellContent,

DataGridColumn column)

{

 var filterTextBox = (TextBox)cellContent;

 //If the column doesn't have a FilterMemberPath specified

 //it won't allow entering text in the TextBox;

 if (string.IsNullOrEmpty(column.FilterMemberPath))

68

 {

 filterTextBox.IsEnabled = false;

 filterTextBox.Text = "Not available";

 }

 else

 {

 filterTextBox.Text = "";

 filterTextBox.IsEnabled = true;

 }

 // Handle TextChanged to apply the filter to the column.

 filterTextBox.TextChanged += new

EventHandler<TextChangedEventArgs>(filterTextBox_TextChanged);

}

2. In UnbindCellContent you must remove the text changed handler to avoid leaking memory:

 Visual Basic
Protected Overrides Sub UnbindCellContent(cellContent As

FrameworkElement, column As DataGridColumn)

 Dim filterTextBox = DirectCast(cellContent, C1SearchBox)

 filterTextBox.TextChanged -= New EventHandler(Of

TextChangedEventArgs)(filterTextBox_TextChanged)

End Sub

 C#
protected override void UnbindCellContent(FrameworkElement cellContent,

DataGridColumn column)

{

 var filterTextBox = (C1SearchBox)cellContent;

 filterTextBox.TextChanged -= new

EventHandler<TextChangedEventArgs>(filterTextBox_TextChanged);

}

Adding a Custom Row to the Data Grid

You can replace rows the data grid uses to show the data of each data item or group with custom rows, or you can
add custom rows on top or bottom of data item rows.

Replacing Data Item Row

In order to replace the rows generated by the data grid you must add a handler to the CreatingRow event. For
example, in the following image the rows were replaced with template rows:

 69

The following code replaces the default row with a template row:

 Visual Basic
Private Sub C1DataGrid_CreatingRow(sender As Object, e As

DataGridCreatingRowEventArgs)

 'Check if it's an item row (it could be a group row too).

 If e.Type = DataGridRowType.Item Then

 e.Row = New DataGridTemplateRow() With { _

 .RowTemplate = DirectCast(Resources("TemplateRow"),

DataTemplate) _

 }

 End If

End Sub

 C#
private void C1DataGrid_CreatingRow(object sender,

DataGridCreatingRowEventArgs e)

{

 //Check if it's an item row (it could be a group row too).

 if (e.Type == DataGridRowType.Item)

 {

 e.Row = new DataGridTemplateRow()

 {

 RowTemplate = (DataTemplate)Resources["TemplateRow"]

 };

 }

}

Adding an Extra Row

ComponentOne DataGrid for Silverlight allows adding one or more rows on top or bottom of data. This
functionality is used in the new row, total row, summary row, and filter row scenarios.

For example, in XAML or code:

 XAML
<c1:C1DataGrid>

 <c1:C1DataGrid.TopRows>

 <local:DataGridFilterRow />

 </c1:C1DataGrid.TopRows>

 <c1:C1DataGrid.BottomRows>

 <local:DataGridFilterRow/>

70

 </c1:C1DataGrid.BottomRows>

</c1:C1DataGrid>

 Visual Basic
grid.Rows.TopRows.Add(New DataGridFilterRow())

 C#
grid.Rows.TopRows.Add(new DataGridFilterRow());

Adding Row Details
Each grid row in ComponentOne DataGrid for Silverlight can be expanded to display a row details section. This
row details section can display more details information about a specific row's content. The row details section is

defined by a DataTemplate, RowDetailsTemplate that specifies the appearance of the section and the data to be
displayed. For an example, see the RowDetailsTemplate (page 90) topic.

Using the RowDetailsVisibilityMode property the row details section can be displayed for selected rows,

displayed for all rows, or it can be collapsed. See Setting Row Details Visibility (page 86) for more information.

Filtering the Grid
ComponentOne DataGrid for Silverlight includes several options for filtering the grid. You can add column
filtering, a filter row, or full-text grid filtering. There's basic filtering or you can use the
C1.Silverlight.DataGrid.Filters.dll assembly which offers more advanced filtering options than are built into the
grid. How you choose to filter the grid will depends on your needs – for example if you just want the end user to be
able to filter text in a column or if your application requires more advanced custom filtering.

Basic Column Filtering

For basic column filtering, simply set the CanUserFilter property to True. This will add a filter column element to
the grid's user interface allowing end users to filter the grid via a drop-down box in each column's header:

By default the CanUserFilter property will be set to True and filtering will be enabled. If you need to manually

enable basic filtering, you can use the following markup or code:

 XAML
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

CanUserFilter="True" />

 Visual Basic
Me.C1DataGrid1.CanUserFilter = True

 C#
this.c1DataGrid1.CanUserFilter = true;

See the Filtering Columns (page 95) topic for more details and examples.

 71

Filter Row Filtering

If you choose, you can add a visible filter row column to the top or bottom of your grid. The filter row column
appears as a row consisting of text boxes in each cell. When text is entered in a text box, the text of the column and

grid is filtered by that text as it is entered:

For example, the following markup adds two filter rows, one at the top and one at the bottom of the grid:

<c1:C1DataGrid x:Name="grid" Grid.Row="1" CanUserAddRows="False"

CanUserFreezeColumns="True" FrozenTopRowsCount="1" FrozenBottomRowsCount="1"

RowHeight="30" >

 <c1:C1DataGrid.TopRows>

 <c1:DataGridFilterRow />

 </c1:C1DataGrid.TopRows>

 <c1:C1DataGrid.BottomRows>

 <c1:DataGridFilterRow/>

 </c1:C1DataGrid.BottomRows>

</c1:C1DataGrid>

You can see the C1DataGrid_Demo2010/Filtering/FilterRow/FilterRow.xaml sample for an example.

Full Text Grid Filtering

C1DataGrid also supports full text filtering for the entire grid. Setting an attached property to the data grid allows
the end user to filter the whole data grid (all the columns at once) by text entered in an external text box. All the
matching results in the grid will be highlighted as the user types:

72

To use this method of grid filtering, you would need to add a text box control to your application and reference
that control in the FullTextSearchBehavior attached property. For example, with the following XAML markup:

<StackPanel>

 <c1:C1TextBoxBase x:Name="filterTextBox" Width="200" Watermark = "Type

here to filter text"/>

 <c1:C1DataGrid x:Name="c1dg" c1:C1NagScreen.Nag="True">

 <c1:C1FullTextSearchBehavior.FullTextSearchBehavior>

 <c1:C1FullTextSearchBehavior Filter="{Binding

ElementName=filterTextBox,Path=C1Text}"/>

 </c1:C1FullTextSearchBehavior.FullTextSearchBehavior>

</c1:C1DataGrid>

</StackPanel>

You can see the C1DataGrid_Demo2010/Filtering/OneTextBoxFilter/OneTextBoxFilter.xaml sample for an
example.

Advanced Filtering

One was to add advanced filtering is by using C1AdvancedFiltersBehavior. C1AdvancedFiltersBehavior adds a
range of advanced filters to the C1DataGrid built-in columns. For example, this behavior adds several predefined
filters, expanding the options for each column:

 <c1:C1DataGrid>

 <c1:C1AdvancedFiltersBehavior.AdvancedFiltersBehavior>

 <c1:C1AdvancedFiltersBehavior/>

 </c1:C1AdvancedFiltersBehavior.AdvancedFiltersBehavior>

</c1:C1DataGrid>

You can find a sample running in $\Silverlight\Main\Samples\SL\C1.Silverlight.DataGrid\C1DataGrid_Demo,
file DemoGrid.xaml.

Column Filter List

An option for filtering the grid is to add a list of filters to a column in XAML. For example, the following markup
adds three filters in a numeric column including a custom filter called RangeFilter:

 73

<c1:DataGridNumericColumn Header="Range filter" Binding="{Binding

StandardCost}" FilterMemberPath="StandardCost">

 <c1:DataGridNumericColumn.Filter>

 <c1:DataGridContentFilter>

 <c1:DataGridFilterList>

 <local:DataGridRangeFilter Minimum="0" Maximum="1000"/>

 <c1:DataGridNumericFilter/>

 <c1:DataGridTextFilter/>

 </c1:DataGridFilterList>

 </c1:DataGridContentFilter>

 </c1:DataGridNumericColumn.Filter>

</c1:DataGridNumericColumn>

You can find a sample in $\Silverlight\Main\Samples\SL\C1.Silverlight.DataGrid\C1DataGrid_Demo, file
Filtering/CustomFilters/CustomFilters.xaml.

Tab Filter List

An option for filtering the grid is to add a list of filters displayed in a tab control:

<c1:DataGridNumericColumn Header="Filters inside a tab control"

Binding="{Binding StandardCost}" FilterMemberPath="StandardCost">

 <c1:DataGridNumericColumn.Filter>

 <c1:DataGridContentFilter>

 <local:DataGridTabFilters Width="250">

 <local:DataGridRangeFilter Minimum="0" Maximum="1000"/>

 <c1:DataGridNumericFilter/>

 <c1:DataGridTextFilter/>

 </local:DataGridTabFilters>

 </c1:DataGridContentFilter>

 </c1:DataGridNumericColumn.Filter>

</c1:DataGridNumericColumn>

You can find a sample in $\Silverlight\Main\Samples\SL\C1.Silverlight.DataGrid\C1DataGrid_Demo, file
Filtering/CustomFilters/CustomFilters.xaml.

Summarizing the Grid
ComponentOne DataGrid for Silverlight includes the C1.Silverlight.DataGrid.Summaries.dll assembly which
can enhance the grid by adding a summary row.

The Summaries assembly contains the following features:

 SummaryRow. a row that shows the aggregate functions corresponding to each column (See

C1DataGrid_Demo2010/Grouping/GrandTotal.xaml)

 GroupRowWithSummaries the same as the previous one but the summaries are shown in the group row
rather than a regular row. (See C1DataGrid_Demo2010/Grouping/Grouping.xaml)

74

Localizing the Application
You can localize (translate) end user visible strings in ComponentOne DataGrid for Silverlight. Localization in

DataGrid for Silverlight is based on the same approach as the standard localization of .NET WinForms

applications.

To localize your application, you will need to complete the following steps:

1. Add resource files for each culture that you wish to support. See Adding Resource Files (page 76).

2. Update your project file's supported cultures. See Adding Supported Cultures (page 77).

3. And, depending on your project, set the current culture. See Setting the Current Culture (page 78).

The following topics describe localizing the grid in more detail.

Adding Resource Files

As with Windows Forms, you can create a set of resource files for the DataGrid for Silverlight assembly. You can

create separate resource files, with the extension .resx, for each required culture. When the application runs you
can switch between those resources and between languages. Note that all parts of your application using

components from a DataGrid for Silverlight DLL must use the same localization resource.

Localization Conventions

To localize the grid you would need to set up resource files for each localized culture. The following conventions
are recommended when creating .resx resource files:

 All .resx files should be placed in the Resources subfolder of your project.

 Files should be named as follows:

XXX.YYY.resx, where:

 XXX is the name of the ComponentOne assembly.

 YYY is the culture code of the resource. If your translation is only for the invariant culture, the .resx
file does not need to contain a culture suffix.

For example:

 C1.Silverlight.DataGrid.de.resx – German (de) resource for the C1.WPF.DataGrid assembly.

 C1.Silverlight.DataGrid.resx – Invariant culture resource for the C1.WPF.DataGrid assembly.

Localization Strings

The following table lists strings that can be added to an .resx file to localize your application:

String Default Value Description

AddNewRow Click here to add a new row Text that appears in the add new row.

CheckBoxFilter_Checked Checked : Text that appears in the filter for check box
columns to indicate if the column should be

filtered for checked or unchecked items.

ComboBoxFilter_SelectAll Select All Text that appears in the filter for check box

columns to select all items.

DateTimeFilter_End End Text that appears in the filter for date time

columns for the end of the date time range.

DateTimeFilter_Start Start Text that appears in the filter for date time

columns for the start of the date time range.

EmptyGroupPanel Drag a column here to group Text that appears in the grouping area of the

 75

by that column grid when no columns are grouped.

Filter_Clear Clear Text that appears in the filter bar to clear the
filter condition.

Filter_Filter Filter Text that appears in the filter bar to add a filter

condition.

NumericFilter_And And Text that appears in the filter bar for numeric
columns to indicate multiple filter conditions.

NumericFilter_Equals Equals Text that appears in the filter bar for numeric
columns to indicate the filter condition should

apply to exact matches only.

NumericFilter_GraterOrEquals Greater/Equals Text that appears in the filter bar for numeric

columns to indicate the filter condition should
apply to items with higher values than the

condition value or exact matches only.

NumericFilter_Greater Greater Text that appears in the filter bar for numeric
columns to indicate the filter condition should

apply to items with higher values than the
condition value.

NumericFilter_Less Less Text that appears in the filter bar for numeric
columns to indicate the filter condition should

apply to items with lower values than the
condition value.

NumericFilter_LessOrEquals Less/Equals Text that appears in the filter bar for numeric
columns to indicate the filter condition should

apply to items with lower values than the
condition value or exact matches only.

NumericFilter_NotEquals Not Equals Text that appears in the filter bar for numeric
columns to indicate the filter condition should

apply to items that are not an exact match.

NumericFilter_Or Or Text that appears in the filter bar for numeric

columns to indicate multiple filter conditions.

TextFilter_Contains Contains Text that appears in the filter for text columns

to indicate if the filter condition should apply to
items that contain the value of the condition.

TextFilter_Equals Equals Text that appears in the filter bar for text
columns to indicate the filter condition should

apply to exact matches only.

TextFilter_NotEquals Not Equals Text that appears in the filter bar for text
columns to indicate the filter condition should

apply to items that are not an exact match.

TextFilter_StartsWith Starts With Text that appears in the filter for text columns

to indicate if the filter condition should apply to
items that start with the value of the condition.

Adding Supported Cultures

Once you've created resource files for your application, you will need to set the supported cultures for your project.
To do so, complete the following steps:

1. In the Solution Explorer, right-click your project and select Unload Project.

The project will appear grayed out and unavailable.

2. Right click the project again, and select the Edit ProjectName.csproj option (or Edit

ProjectName.vbproj, where ProjectName is the name of your project).

76

3. In the .csproj file, locate the <SupportedCultures></SupportedCultures> tags. In between the

tags, list the cultures you want to be supported, separating each with a semicolon.

For example:
<SupportedCultures>fr;es;en;it;ru</SupportedCultures>

This will support French, Spanish, English, Italian, and Russian.

4. Save and close the .csproj or .vbproj file.

5. In the Solution Explorer, right-click your project and choose Reload Project from the content menu.

The project will be reloaded and will now support the specified cultures.

Setting the Current Culture

The C1DataGrid control will use localization files automatically according to the culture selected in the
application as long as you haven't moved files to another location or excluded files from the project. By default, the

current culture is designated as System.Threading.Thread.CurrentThread.CurrentUICulture. If you want to use
a culture other than the current culture, you can set the desired culture in your application using the following
code:

 Visual Basic
Public Sub New()

 ' Set desired culture, for example here the French (France) locale.

 System.Threading.Thread.CurrentThread.CurrentUICulture = New

System.Globalization.CultureInfo("fr-FR")

 ' InitializeComponent() call.

 ' Add any initialization after the InitializeComponent() call.

 InitializeComponent()

End Sub

 C#
public MainPage()

{

 // Set desired culture, for example here the French (France) locale.

 System.Threading.Thread.CurrentThread.CurrentUICulture = new

System.Globalization.CultureInfo("fr-FR");

 // InitializeComponent() call.

 InitializeComponent();

 // Add any initialization after the InitializeComponent() call.

}

Enabling or Disabling End User Interaction
You can customize how much control end users have over the grid at run time. For example you can enable
grouping, and prevent actions such as filtering columns and resizing rows. The following table lists properties that

you can use to customize how users interact with the grid:

Property Description

CanUserAddRows Determines if users can add rows at run time. True by default.

CanUserEditRows Determines if users can edit rows at run time. True by default.

CanUserFilter Determines if users can filter columns at run time. If True, the

filter bar will be visible on columns. True by default.

CanUserGroup Determines if users can group rows at run time. If True the
grouping area of the grid will be visible. False by default.

CanUserRemoveRows Determines if users can remove rows at run time by pressing

 77

the DELETE key. True by default.

CanUserReorderColumns Determines if users can reorder columns at run time by using a
drag-and-drop operation. True by default.

CanUserResizeColumns Determines if users can resize columns at run time. True by

default.

CanUserResizeRows Determines if users can resize rows at run time. False by
default.

CanUserSort Determines if users can sort columns at run time by clicking on
a column's header. True by default.

CanUserToggleDetails Determines if users can toggle the row details section's
visibility. True by default.

CanUserFreezeColumns Determines if users can change the number of frozen columns
by dragging the freezing separator at run time. None by

default.

In each column you can customize the following properties:

Property Description

CanUserMove Determines if users can reorder this column at run time. True

by default.

CanUserResize Determines if users can resize this column at run time. True by

default.

CanUserFilter Determines if users can filter this column at run time. If True,
the filter bar will be visible on this column. True by default.

CanUserSort Determines if users can sort this column at run time. True by
default.

Note: The properties set in the grid take precedence over those set in columns.

Setting Selection Mode
You can set the grid's selection mode behavior by setting the SelectionMode property. You can change how users

interact with the grid, but setting the SelectionMode property to one of the following values:

Option Description

None The user cannot select any item.

SingleCell The user can select only one cell at a time.

SingleRow The user can select only one row at a time.

SingleColumn The user can select only one column at a time.

SingleRange The user can select only one cells range at a time. (A range is the rectangle delimited by
two cells)

MultiRow (Default) The user can select multiple rows while holding down the corresponding modifier key.

MultiColumn The user can select multiple columns while holding down the corresponding modifier key.

MultiRange The user can select multiple cells ranges while holding down the corresponding modifier
key.

78

For more information about modifier keys and the MultiRow option, see the Multiple Row Selection (page 93) topic.

Locking the Grid
By default users can interact and edit the grid and columns in the grid. If you choose, you can set the grid or

specific columns in the grid to not be editable with the IsReadOnly property.

In XAML

To lock the grid from being edited, add IsReadOnly="True" to the <c1:C1DataGrid> tag so that it appears

similar to the following:
<c1:C1DataGrid x:Name="C1DataGrid1" IsReadOnly="True">

In Code

To lock the grid from editing, set the IsReadOnly property to True. For example:

 Visual Basic
Me.C1DataGrid1.IsReadOnly = True

 C#
this.c1DataGrid1.IsReadOnly = true;

Deferred and Real Time Scrolling
ComponentOne DataGrid for Silverlight supports both real time and deferred scrolling. By default, real time
scrolling is used and as a user moves the thumb button or clicks the scroll button the grid scrolls. In deferred
scrolling, the grid is not scrolled until the user releases the scrollbar thumb; the grid does not move as the scrollbar
thumb is moved. You might want to implement deferred scrolling in your application if the grid contains a large
amount of data or to optimize scrolling.

You can determine how the grid is scrolled by setting the ScrollMode property. You can set the ScrollMode

property to a C1DataGridScrollMode enumeration option, either RealTime (default) or Deferred. The example

below set the grid to deferred scrolling mode.

In XAML

To set the grid to deferred scrolling mode, add ScrollMode="Deferred" to the <c1:C1DataGrid> tag so

that it appears similar to the following:
<c1:C1DataGrid x:Name="c1DataGrid1" ScrollMode="Deferred">

In Code

To set the grid to deferred scrolling mode, set the ScrollMode property to Deferred. For example:

 Visual Basic
Me.C1DataGrid1.ScrollMode = C1DataGridScrollMode.Deferred

 C#
this.c1DataGrid1.ScrollMode = C1DataGridScrollMode.Deferred;

Paging Grid Data
If you are displaying a large amount of data in the grid or have a limited amount of space in your application, you

might want to add paging to your C1DataGrid control. ComponentOne DataGrid for Silverlight supports paging

through the use of the C1DataPager control and the PagedCollectionView class. Paging the grid can decrease load

time and allow users to interact more easily with the control.

C1DataPager Control

The C1DataPager control is very similar to the standard Microsoft DataPager control. When you add the control
to your application, it will appear similar to the following image:

 79

The control includes First, Previous, Next, and Last buttons by default as well as a text box listing the current

page and total number of pages. You can include this control in your application, and by setting the PageSize

property on the control allow the grid to be paged by any amount you choose.

PagedCollectionView Class

The C1DataPager control provides a convenient user interface for controlling paging with a

PagedCollectionView. You use the PagedCollectionView class to provide grouping, sorting, filtering, and paging

functionality for any collection that implements the IEnumerable interface. You can think of a collection view as a

layer on top of a binding source collection that allows you to navigate and display the collection based on sort,
filter, and group queries, all without having to manipulate the underlying source collection itself.

Using the C1DataPager Control and PagedCollectionView Class

So suppose you might set the C1DataGrid control's ItemsSource property with the following code:

 Visual Basic
C1DataGrid1.ItemsSource = data

 C#
c1DataGrid1.ItemsSource = data;

Instead, using the PagedCollectionView class, you might set the C1DataGrid control's ItemsSource property with

the following code:

 Visual Basic
C1DataGrid1.ItemsSource = data

 C#
c1DataGrid1.ItemsSource = new PagedCollectionView(data);

And then you might bind the C1DataPager control to the C1DataGrid control; for example in XAML markup:

<c1ria:C1DataPager Source="{Binding ItemsSource, ElementName=c1DataGrid1}"

HorizontalAlignment="Left" Name="c1DataPager1" VerticalAlignment="Top"

PageSize="5" />

DataGrid for Silverlight's Appearance
The C1DataGrid control supports common table formatting options, such as alternating row backgrounds and the

ability to show or hide headers, grid lines, and scroll bars. Additionally, the control provides several brush, style
and template properties that you can use to completely change the appearance of the control and its rows,
columns, headers, and cells.

Note that ComponentOne DataGrid for Silverlight uses ClearStyle technology for styling. For details, see
C1DataGrid ClearStyle (page 87).

C1DataGrid Themes
ComponentOne DataGrid for Silverlight incorporates several themes that allow you to customize the appearance

of your grid. When you first add a C1DataGrid control to the page, it appears similar to the following image:

80

This is the control's default appearance. You can change this appearance by using one of the built-in themes or by
creating your own custom theme. All of the built-in themes are based on Silverlight Toolkit themes. The built-in
themes are described and pictured below; note that in the images below, a cell has been selected and the mouse is
hovering over another cell to show both selected and hover styles:

Theme Name Theme Preview

C1ThemeBureauBlack

C1ThemeExpressionDark

 81

C1ThemeExpressionLight

C1ThemeRainierOrange

C1ThemeShinyBlue

82

C1ThemeWhistlerBlue

Editing Styles
ComponentOne DataGrid for Silverlight's C1DataGrid control provides several style properties that you can use
to completely change the appearance of the control and its rows, columns, headers, and cells. Some of the included
styles are described in the table below:

Style Description

CellStyle Gets or sets the style that is used when rendering the cells.

ColumnHeaderStyle Gets or sets the style that is used when rendering the column
headers.

DragOverColumnStyle Style applied to a ContentControl element used to show the
dragged column while it is moved.

DragSourceColumnStyle Style applied to a ContentControl that is placed over the
source column when it starts the drag-and-drop operation.

DropIndicatorStyle Style applied to a ContentControl element used to indicate the
position where the dragged column will be dropped.

FilterStyle Gets or sets the style used for the filter control container.

FocusStyle Sets the style of the internal Rectangle used to show the focus

on the C1DataGrid.

GroupColumnHeaderStyle Gets or sets the style that is used when rendering the column

headers in the group panel.

GroupRowHeaderStyle Gets of sets the style of the header of the group row.

GroupRowStyle Gets of sets the style of the group row.

NewRowHeaderStyle Gets or sets the style that is used when rendering the row
header for entering new items.

NewRowStyle Gets or sets the style that is used when rendering the row for
entering new items.

RowHeaderStyle Gets or sets the style that is used when rendering the row
headers.

RowStyle Gets or sets the style that is used when rendering the rows.

Table Formatting Options
The following topics detail table formatting options, including grid headers and placement of table objects.

 83

Setting Row and Column Header Visibility

By default row and column headers are visible in the grid. However, if you choose, you can set one or both of the

headers to be hidden by setting the HeadersVisibility property. You can set the HeadersVisibility property to one

of the following options:

Option Description

None Neither row nor column headers are visible in the grid.

Column Only column headers are visible in the grid.

Row Only row headers are visible in the grid.

All (default) Both column and row headers are visible in the grid.

Setting Grid Line Visibility

By default vertical and horizontal grid lines are visible in the grid. However, if you choose, you can set one or both

sets of grid lines to be hidden by setting the GridLinesVisibility property. You can set the GridLinesVisibility

property to one of the following options:

Option Description

None Neither horizontal nor vertical grid lines are visible in the grid.

Horizontal Only horizontal grid lines are visible in the grid.

Vertical Only vertical grid lines are visible in the grid.

All (default) Both horizontal and vertical grid lines are visible in the grid.

Setting New Row Visibility

By default the Add New row is located at the bottom of the grid. However, if you choose, you can change its

location by setting the NewRowVisibility property. You can set the NewRowVisibility property to one of the
following options:

Option Description

Top The Add New row appears at the top of the grid.

Bottom (default) The Add New row appears at the bottom of the grid.

Setting Vertical and Horizontal Scrollbar Visibility

By default the grid's horizontal and vertical scrollbars are only visible when the height or width of grid content
exceeds the size of the grid. However, if you choose, you can set the scrollbars to be always or never visible, and

even disable them altogether, by setting the VerticalScrollbarVisibility and HorizontalScrollbarVisibility

properties. You can set the VerticalScrollbarVisibility and HorizontalScrollbarVisibility properties to one of the
following options:

Option Description

Disabled The chosen scrollbar is disabled.

Auto (default) The chosen scrollbar appears only when the content of the grid
is exceeds the grid window.

Hidden The chosen scrollbar appears to be hidden.

Visible The chosen scrollbar is always visible.

84

Setting Row Details Visibility

By default row details are collapsed and not visible. You can use the RowDetailsVisibilityMode property to set if

and when row details are visible. You can set the RowDetailsVisibilityMode property to one of the following
options:

Option Description

VisibleWhenSelected Row details are only visible when selected.

Visible Row details are always visible.

Collapsed (default) Row details appear collapsed and are not visible.

C1DataGrid Brushes
ComponentOne DataGrid for Silverlight's C1DataGrid control provides several brush properties that you can
use to completely change the appearance of the control and its rows, columns, headers, and cells. Some of the
included brushes are described in the table below:

Brush Description

Background Gets or sets the background brush that is used when
rendering. (This brush will be applied to all the parts of

the data grid)

Foreground Gets or sets the foreground brush that is used when

rendering. (This brush will be applied to all the parts of
the data grid)

BorderBrush Gets or sets the border brush that is used when
rendering. (This brush will be applied to some of the

parts of the data grid depending on the theme)

SelectedBrush Gets or sets the selected brush that is used when

rendering selected rows and row and column headers,
etc.

MouseOverBrush Gets or sets the mouse over brush that is used when
mouse is over rows and row and column headers, etc.

RowBackground Gets or sets the background brush of a row.

RowForeground Gets or sets the foreground brush of a row.

AlternatingRowBackground Gets or sets the background brush of an alternating row.

AlternatingRowForeground Gets or sets the foreground brush of an alternating row.

HorizontalGridLinesBrush Gets of sets the brush applied to the horizontal lines.

VerticalGridLinesBrush Gets of sets the brush applied to the vertical lines.

ComponentOne DataGrid for Silverlight uses ClearStyle technology for styling. For details, see C1DataGrid

ClearStyle (page 87).

C1DataGrid ClearStyle
DataGrid for Silverlight supports ComponentOne's new ClearStyle technology that allows you to easily change
control colors without having to change control templates. By just setting a few color properties you can quickly
style the entire grid.

 85

You can completely change the appearance of the C1DataGrid control by simply setting a few properties, such as

the C1DataGrid.Background property which sets the color scheme of the C1DataGrid control. For example, if

you set the Background property to "#FF663366" so the XAML markup appears similar to the following:

<c1:C1DataGrid HorizontalAlignment="Left" Margin="10,10,0,0"

Name="c1DataGrid1" VerticalAlignment="Top" CanUserFreezeColumns="Left"

CanUserGroup="True" Background="#FFFFFFCC"/>

The grid will appear similar to the following image:

If you set the Background property to "#FF663366" and the Foreground property to "White", so the XAML

markup appears similar to the following:

<c1:C1DataGrid HorizontalAlignment="Left" Margin="10,10,0,0"

Name="c1DataGrid1" VerticalAlignment="Top" CanUserFreezeColumns="Left"

CanUserGroup="True" Background="#FF663366" Foreground="White"/>

The grid will appear similar to the following image:

You can even set the Background property to a gradient value, for example with the following XAML:

86

<c1:C1DataGrid x:Name="c1DataGrid1" HorizontalAlignment="Left"

Margin="10,10,0,0" VerticalAlignment="Top" CanUserFreezeColumns="Left"

CanUserGroup="True">

 <c1:C1DataGrid.Background>

 <LinearGradientBrush StartPoint="0,0" EndPoint="1,1">

 <GradientStop Color="GreenYellow" Offset="0.0" />

 <GradientStop Color="YellowGreen" Offset="0.85" />

 </LinearGradientBrush>

 </c1:C1DataGrid.Background>

</c1:C1DataGrid>

The grid will appear similar to the following image:

C1DataGrid Template Parts
In Microsoft Expression Blend, you can view and edit template parts by creating a new template (for example,

click the C1DataGrid control to select it and choose Object | Edit Template | Edit a Copy). Once you've created

a new template, the parts of the template will appear in the Parts window:

 87

Note that you may have to select the ControlTemplate for its parts to be visible in the Parts window.

In the Parts window, you can double-click any element to create that part in the template. Once you have done so,

the part will appear in the template and the element's icon in the Parts pane will change to indicate selection:

Template parts available in the C1DataGrid control include:

Name Type Description

Body DataGridMainPanel Panel that contains the body of the grid.

ColumnsHeader DataGridColumnsHeaderPanel Panel that contains a collection of
DataGridColumnsHeaderPanel.

Grouping DataGridGroupingPresenter Presenter that displays the grouping panel or another
element if there is no columns in the grouping panel.

HorizontalScrollBar ScrollBar Represents a control that provides a scroll bar that
has a sliding Thumb whose position corresponds to a

value.

Root Grid Defines a flexible grid area that consists of columns
and rows.

RowsHeader DataGridRowsHeaderPanel Panel that contains DataGridRowsHeaderPanel.

VerticalScrollBar ScrollBar Represents a control that provides a scroll bar that

has a sliding Thumb whose position corresponds to a
value.

RowDetailsTemplate
The RowDetailsTemplate template controls the appearance of the row details area. The row details section
appears below a row and can display additional information.

In Expression Blend, you can create an empty template at design time by selecting the C1DataGrid control and

then clicking Object | Edit Other Templates | Edit RowDetailsTemplate | Create Empty.

http://msdn2.microsoft.com/en-us/library/ms595205
http://msdn.microsoft.com/en-us/library/system.windows.controls.primitives.thumb.aspx
http://msdn2.microsoft.com/en-us/library/ms610550
http://msdn2.microsoft.com/en-us/library/ms595205
http://msdn.microsoft.com/en-us/library/system.windows.controls.primitives.thumb.aspx

88

You can include text, controls, and more in the RowDetailsTemplate, including controls bound to data. For
example, the following template includes bound and unbound text and check boxes:

<c1:C1DataGrid.RowDetailsTemplate>

 <!-- Begin row details section. -->

 <DataTemplate>

 <Border BorderBrush="DarkGray" BorderThickness="1"

Background="Azure">

 <StackPanel Orientation="Horizontal">

 <StackPanel>

 <StackPanel Orientation="Horizontal">

 <!-- Controls are bound to properties. -->

 <TextBlock FontSize="16" Foreground="MidnightBlue"

Text="{Binding Name}" Margin="0,0,10,0" VerticalAlignment="Bottom" />

 <TextBlock FontSize="12" Text="Order Date: "

VerticalAlignment="Bottom"/>

 <TextBlock FontSize="12" Text=" Complete:"

VerticalAlignment="Bottom" />

 <CheckBox IsChecked="{Binding Complete, Mode=TwoWay}"

VerticalAlignment="Center" />

 </StackPanel>

 <TextBlock FontSize="12" Text="Notes: " />

 <TextBox FontSize="12" Text="{Binding Notes,

Mode=TwoWay}" Width="420" TextWrapping="Wrap"/>

 </StackPanel>

 </StackPanel>

 </Border>

 </DataTemplate>

 <!-- End row details section. -->

</c1:C1DataGrid.RowDetailsTemplate>

Run-time Interaction
The image below highlights some of the run-time interactions possible in a ComponentOne DataGrid for

Silverlight C1DataGrid control:

 89

The following topics detail these run-time features including filtering, sorting, and grouping data.

Keyboard and Mouse Navigation
ComponentOne DataGrid for WPF supports several run-time keyboard and mouse navigation options that
provide increased accessibility. The following topics detail some of these end-user interactions.

Keyboard Navigation

The following table lists several keyboard shortcuts that can be used to navigate and manipulate the grid at run
time. Note that on Apple computers, end users should use the Command (or Apple) key in place of the CTRL key:

Key Combination Description

DOWN Arrow Moves the focus to the cell directly below the current cell. If the

focus is in the last row, pressing the DOWN ARROW does nothing.

UP Arrow Moves the focus to the cell directly above the current cell. If the

focus is in the first row, pressing the UP ARROW does nothing.

LEFT ARROW

Moves the focus to the previous cell in the row. If the focus is in the

first cell in the row, pressing the LEFT ARROW does nothing.

RIGHT Arrow Moves the focus to the next cell in the row. If the focus is in the last

cell in the row, pressing the RIGHT ARROW does nothing.

HOME Moves the focus to the first cell in the current row.

END Moves the focus to the last cell in the current row.

PAGE DOWN Scrolls the control downward by the number of rows that are
displayed. Moves the focus to the last displayed row without

changing columns. If the last row is only partially displayed, scrolls
the grid to fully display the last row.

PAGE UP Scrolls the control upward by the number of rows that are displayed.

90

Moves focus to the first displayed row without changing columns. If

the first row is only partially displayed, scrolls the grid to fully
display the first row.

TAB If the current cell is in edit mode, moves the focus to the next
editable cell in the current row. If the focus is already in the last cell

of the row, commits any changes that were made and moves the
focus to the first editable cell in the next row. If the focus is in the

last cell in the control, moves the focus to the next control in the tab
order of the parent container.

If the current cell is not in edit mode, moves the focus to the next
control in the tab order of the parent container.

SHIFT+TAB If the current cell is in edit mode, moves the focus to the previous
editable cell in the current row. If the focus is already in the first cell

of the row, commits any changes that were made and moves the
focus to the last cell in the previous row. If the focus is in the first

cell in the control, moves the focus to the previous control in the tab
order of the parent container.

If the current cell is not in edit mode, moves the focus to the
previous control in the tab order of the parent container.

CTRL+DOWN ARROW Moves the focus to the last cell in the current column.

CTRL+UP ARROW Moves the focus to the first cell in the current column.

CTRL+RIGHT ARROW Moves the focus to the last cell in the current row.

CTRL+LEFT ARROW Moves the focus to the first cell in the current row.

CTRL+HOME Moves the focus to the first cell in the control.

CTRL+PAGE DOWN Same as PAGE DOWN.

CTRL+PAGE UP Same as PAGE UP.

ENTER Enter/exit edit mode on a selected cell (if the grid and column's
IsReadOnly properties are False).

F2 Enter edit mode on a selected cell (if the grid and column's
IsReadOnly properties are False). If the focus is on the new row,

the grid begins editing the first editable cell of the new row.

ESC Cancel editing of a cell or new row.

DEL Delete selected row.

INSERT Scrolls to the new row and begins editing it.

Mouse Navigation

The following table lists several mouse and keyboard shortcuts that can be used to navigate and manipulate the
grid at run time. Note that on Apple computers, end users should use the Command (or Apple) key in place of the

CTRL key:

Mouse Action Description

Click an unselected row Makes the clicked row the current row.

Click a cell in the current
row

Puts the clicked cell into edit mode.

Drag a column header cell Moves the column so that it can be dropped into a new position (if
the CanUserReorderColumns property is True and the current

column's CanUserReorder property is True).

Drag a column header
separator

Resizes the column (if the CanUserResizeColumns property is
True and the CanUserResize property is True for the current

column).

 91

Click a column header cell If the property ColumnHeaderClickAction is set to Sort, when the

user clicks the column header it sorts the column (if the
CanUserSortColumns property is True and the CanUserSort

property is True for the current column).

Clicking the header of a column that is already sorted will reverse

the sort direction of that column.

Pressing the CTRL key while clicking multiple column headers will

sort by multiple columns in the order clicked.

If the property ColumnHeaderClickAction is set to Select the

column will be selected if SelectionMode supports column
selection.

CTRL+click a row Modifies a non-contiguous multi-row selection (if SelectionMode
support multiple rows, cells, or columns).

SHIFT+click a row Modifies a contiguous multi-row selection (if SelectionMode
support multiple rows, cells, or columns).

Multiple Row Selection

If the SelectionMode property is set to MultiRow, the navigation behavior does not change, but navigating with
the keyboard and mouse while pressing SHIFT (including CTRL+SHIFT) will modify a multi-row selection.
Before navigation starts, the control marks the current row as an anchor row. When you navigate while pressing

SHIFT, the selection includes all rows between the anchor row and the current row.

Selection Keys

The following selection keys modify multi-row selection:

 SHIFT+DOWN ARROW

 SHIFT+UP ARROW

 SHIFT+PAGE DOWN

 SHIFT+PAGE UP

 CTRL+SHIFT+DOWN ARROW

 CTRL+SHIFT+UP ARROW

 CTRL+SHIFT+PAGE DOWN

 CTRL+SHIFT+PAGE UP

Mouse Selection

If the SelectionMode property is set to MultiRow, clicking a row while pressing CTRL or SHIFT will modify a

multi-row selection.

When you click a row while pressing SHIFT, the selection includes all rows between the current row and an
anchor row located at the position of the current row before the first click. Subsequent clicks while pressing SHIFT
changes the current row, but not the anchor row.

If the CTRL key is pressed when navigating, the arrow keys will navigate to the border cells; for example, if you
are in the first row and you press CTRL + DOWN you will navigate to the last row, if the SHIFT key is pressed,
all the rows will be selected though.

Custom Keyboard Navigation

You can add your own custom navigation to the C1DataGrid control. Custom keyboard navigation enables you
to control how users interact with the grid. For example, you can prevent users from navigating to read-only
columns or cells with null values. In a hierarchical grid, you could set up navigation between parent and child

92

grids. To add custom keyboard navigation you would need to handle the KeyDown event and then add code to
override the default navigation with your customized navigation.

Adding the KeyDown Event Handler

Complete the following steps to add the KeyDown event handler:

1. Switch to Code view and add an event handler for the KeyDown event, for example:

 Visual Basic
Private Sub C1DataGrid1_KeyDown(ByVal sender As System.Object, ByVal e

As System.Windows.Input.KeyEventArgs) Handles C1DataGrid1.KeyDown

 ' Add code here.

End Sub

 C#
private void c1DataGrid1_KeyDown(object sender, KeyEventArgs e)

{

 // Add code here.

}

2. Switch to Source view and add the event handler to instances of the C1DataGrid control, for example:
<c1:C1DataGrid x:Name="c1DataGrid1" AutoGenerateColumns="True"

KeyDown="c1DataGrid1_KeyDown"></c1:C1DataGrid>

You can now add code to the KeyDown event handler to customize the default navigation. For an example, you

can take a look at the hierarchical grid example (C1_MDSL_RowDetail) in the ControlExplorer sample.

Resizing Columns and Rows
Users can easily resize columns and rows at run time through a drag-and-drop operation. To resize columns at run
time, complete the following steps:

1. Navigate the mouse to the right border of a column's header. The column resizing cursor appears:

2. Click the mouse and drag the cursor to the left or the right to resize the column:

3. Release the mouse to complete the column resize operation.

 93

Resize rows in a similar way by dragging the row indicator column. Note that the CanUserResizeColumns and

CanUserResizeRows properties must be set to True (default) for column and row resizing to be possible. See the

Disabling Column and Row Resizing (page 148) topic for more details.

Reordering Columns
End users can easily reorder columns at run time. To reorder columns at run time, complete the following steps:

1. Click the column header for the column you wish to reorder.

2. Drag the column header to where you wish the column to be ordered. Notice that a line will appear if you
can place the column in that location:

3. Release the mouse to place the column in its new location and reorder the columns.

Note that the CanUserReorderColumns property must be set to True (default) for column reordering to be
possible. See the Disabling Column Reordering (page 148) topic for more details.

Filtering Columns
ComponentOne DataGrid for Silverlight incorporates a filter column element in the user interface, allowing users
to filter columns by specific criteria at run time.

To filter a column's text at run time, complete the following steps:

1. Click the drop-down arrow in a text column's header:

2. Enter the text in the filter text box that you want the column to be filtered by, and click the Filter button.

The column will be sorted.

Filter options vary depending on the column type. The following filter options may be included:

 Text Columns

In text columns, the filter bar appears similar to the following:

94

You can filter the column by whether items in the column contain, start, are equivalent to, or are not
equivalent to the filter condition:

 Boolean Columns

Boolean check box columns can be filtered by whether items in the column are checked or not:

 Numeric Columns

Numeric columns offer several options for filtering:

 95

You can filter the column by specific condition:

And you can use the And and Or radio buttons to filter by multiple conditions:

Note that the CanUserFilter property must be set to True (default) for filtering to be possible.

Sorting Columns
Sorting grid columns at run time is simple in ComponentOne DataGrid for Silverlight. To sort columns click
once on the header of the column that you wish to sort.

You will notice that the sort glyph, a sort direction indicator, appears when a column is sorted:

96

You can click once again on the column header to reverse the sort; notice that the sort glyph changes direction.

Sort multiple columns by sorting one column and then holding the CTRL key while clicking on a second column
header to add that column to your sort condition. For example, in the following image the Category column was

first sorted, and then the Name column was reverse sorted:

Note that the CanUserSort property must be set to True (default) for sorting to be possible.

Grouping Columns
Users can group columns in your grid at run time to better organize information. The grouping area at the top of
the grid allows you to easily group columns through a simple drag-and-drop operation:

To group a column, drag a column header onto the grouping area:

 97

You can sort the display of grouped items, by clicking the column header in the grouping area. In the following
image the grouped column has been reverse sorted:

You can group multiple columns by performing a drag-and-drop operation to drag additional columns to the
grouping area:

To remove the grouping, simply click the X button next to a grouped column in the grouping area of the grid:

98

Note that the CanUserGroup property must be set to True for the grouping area to be visible and grouping to be

possible (by default it is set to False). For more information, see Enabling Grouping in the Grid (page 146). For

more information about showing the grouping area, see the Showing the Grouping Area (page 147) topic.

Freezing Columns
Users can freeze columns at run time to prevent them from being scrolled horizontally. This is useful as it keeps
specific columns visible when the grid is resized or scrolled. The freeze bar enables users to freeze columns. When
visible, the freeze bar appears to the left of the first columns by default:

To freeze specific columns, move the freeze bar to the right of the column(s) you want to freeze. For example, in
the following image the freeze bar was moved to the right of the second columns:

Once columns are frozen, they are not scrolled when the grid is scrolled horizontally. For example, in the
following image the first two columns are frozen:

 99

Note that the ShowVerticalFreezingSeparator property must be set to Left (by default None) for the freeze bar to

be visible and the CanUserFreezeColumns property must be set to Left (by default None) to allow users to freeze
columns are run time. See Enabling Column Freezing (page 150) for an example.

Editing Cells
Users can easily edit cell content at run time. Editing content is as simple as selecting a cell and deleting or
changing the content in that cell. Complete the following steps to edit cell content:

1. Double-click the cell you would like to edit.

A cursor will appear in that cell indicating that it can be edited and a pencil icon will appear in the row
indicator column, indicating that a cell in that row is in edit mode.

2. Delete text or type in new or additional text to edit the content of the cell:

3. Press ENTER or click away from the cell you are editing for the changes you made to take effect:

100

The pencil icon indicating editing will no longer be visible.

Note that the CanUserEditRows property must be set to True (default) for editing to be possible. See Disabling
Cell Editing (page 151) for an example.

Adding Rows to the Grid
You can add rows to the grid at run time using the new row bar. The new row bar, located at the bottom of the

grid by default and indicated by an asterisk symbol (*), allows you to type in new information to add to the grid at
run time:

To add a new row, simply type text into the new row bar:

Press ENTER for text to be added to the grid in a new row:

 101

Note that the CanUserAddRows property must be set to True (default) for row adding to be possible. See
Disabling Adding Rows (page 152) for an example.

 103

DataGrid for Silverlight Tutorials
The following tutorials provide additional information about ComponentOne DataGrid for Silverlight and walk
through steps to further customize your grid. Tutorials include additional data binding, styling, and behavior
customization steps and highlight advanced features.

Binding the Grid to a Web Service
The following tutorial will walk you through the process of binding the C1DataGrid control to the standard

Northwind database and creating a Web Service.

Step 1 of 3: Creating the User Interface

In this step you'll begin in Visual Studio to create a Silverlight grid application. You'll then continue by creating

and customizing the application's user interface (UI) and adding the C1DataGrid control to your project.

To set up your project, complete the following steps:

1. In Visual Studio, select File | New | Project.

2. In the New Project dialog box, select a language in the left pane and in the templates list select Silverlight

Application. Enter a Name for your project, for example "ComponentOneDataGrid", and click OK. The

New Silverlight Application dialog box will appear.

3. Click OK to accept the default settings, close the New Silverlight Application dialog box, and create your
project.

4. If the MainPage.xaml file is not currently open, navigate to the Solution Explorer and double-click on the

MainPage.xaml item.

5. In the XAML view, locate the <UserControl> tag.

6. In the <UserControl> tag, replace Width="400" Height="300" (or d:DesignWidth="400"

d:DesignHeight="300") with Width="600" Height="400".

This will increase the size of your Silverlight application.

7. Place the cursor just after the <Grid x:Name="LayoutRoot" Background="White"> tag and add

the following markup:
<!-- Grid Layout-->

<Grid.RowDefinitions>

<RowDefinition Height="Auto" />

<RowDefinition Height="*" />

<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

This row definition will define the layout of your grid.

8. Add a title to your application by adding the following TextBlock just under the

</Grid.RowDefinitions> tag:
<!-- Title -->

<TextBlock Text="ComponentOne DataGrid for Silverlight" Margin="5"

FontSize="16"/>

9. In the XAML window of the project, place the cursor just above the </Grid> tag and click once.

10. Navigate to the Toolbox and double-click the C1DataGrid icon to add the grid control to

MainPage.xaml. The XAML markup will now look similar to the following:

104

<UserControl xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml"

x:Class="C1DataGrid.MainPage"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Width="600"

Height="400">

 <Grid x:Name="LayoutRoot" Background="White">

 <!-- Grid Layout-->

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <!-- Title -->

 <TextBlock Text="ComponentOne DataGrid for Silverlight"

Margin="5" FontSize="16"/>

 <c1:C1DataGrid></c1:C1DataGrid>

 </Grid>

</UserControl>

Note that the C1.Silverlight.DataGrid namespace and <c1:C1DataGrid></c1:C1DataGrid> tags

have been added to the project.

11. If the <c1:C1DataGrid> tag includes existing content, delete it so it appears similar to the following:
<c1:C1DataGrid>

12. Give your grid a name by adding x:Name="_c1DataGrid" to the <c1:C1DataGrid> tag so that it

appears similar to the following:
<c1:C1DataGrid x:Name="_c1DataGrid">

By giving the control a unique identifier, you'll be able to access the C1DataGrid control in code.

13. Define the location of your grid by adding Grid.Row="1" to the <c1:C1DataGrid> tag so that it

appears similar to the following:
<c1:C1DataGrid x:Name="_c1DataGrid" Grid.Row="1">

14. Add the following markup just after the </c1:C1DataGrid> tag:
<TextBlock x:Name="_tbStatus" Text="Ready"

 VerticalAlignment="Center" FontSize="12" Foreground="Gray" Margin="5"

Grid.Row="2" />

This TextBlock will be used to display status information text.

 What You've Accomplished

Run your application, and observe that your page includes a title, a grid, and text below the grid. You've
successfully created a basic grid application, but the grid is blank and contains no data. In the next steps you'll add
a database to your project and bind the grid to a data source.

Step 2 of 3: Adding a Database and Web Service

In this step you'll add a database to your project, and begin the process of binding the grid. Note that in this step
you'll be using the standard Northwind database and an example code file, both of which should be installed with

the Studio for Silverlight samples.

To set up your project, complete the following steps:

1. In the Solution Explorer, expand the .Web project (for example ComponentOneDataGrid.Web) and if the

App_Data folder is not visible, right click the .Web project, and select Add | New Folder. Name the
folder "App_Data".

2. In the Solution Explorer, right click the App_Data node, and select Add | Existing Item.

 105

3. In the Add Existing Item dialog box, navigate to the ComponentOne Samples\Studio for

Silverlight\C1.Silverlight.DataGrid\C1DataGrid_MDSL\C1_MDSLWeb\App_Data directory

within the Documents or My Documents folder, select the NWIND.mdb file, and click Add to add it to
your project.

4. In the Solution Explorer, select the NWIND.MDB file you just added, and in the Properties window set

its Build Action property to None

5. In the Solution Explorer, right-click the .Web project (for example ComponentOneDataGrid.Web) and

select Add | Existing Item.

6. In the Add Existing Item dialog box, navigate to the ComponentOne Samples\Studio for

Silverlight\C1.Silverlight.DataGrid\C1DataGrid_MDSL\C1_MDSLWeb directory within the

Documents or My Documents folder, select the SmartDataSet.cs file, and click Add to add it to your
project.

Note that for Visual Basic projects, you can find the SmartDataSet.vb file posted online in the forums.
This file contains code allowing data transfer to and from the database.

7. In the Solution Explorer, right-click the .Web project and select Add | New Item.

8. In the left pane of the Add New Item dialog box, select the Web item.

9. In the templates list, select Web Service, name the Web Service "DataService.asmx", and click the Add
button. Note that the Web Service file will be added to your project and automatically opened.

10. In the DataService.asmx file, add the following using statements at the top of the file:

 Visual Basic
Imports System.IO

Imports System.Data

Imports C1_MDSLWeb ' SmartDataSet namespace

 C#
using System.IO;

using System.Data;

using C1_MDSLWeb; // SmartDataSet namespace

11. Next, uncomment the [System.Web.Script.Services.ScriptService] or

<System.Web.Script.Services.ScriptService()> line.

This will allow the Web Service to be called from script.

12. Delete the existing HelloWorld method and replace it with the following code:

 Visual Basic
<WebMethod> _

Public Function GetData(tables As String) As Byte()

 ' Create DataSet with connection string

 Dim ds = GetDataSet()

 ' Load data into DataSet

 ds.Fill(tables.Split(","C))

 ' Persist to stream

 Dim ms = New System.IO.MemoryStream()

 ds.WriteXml(ms, XmlWriteMode.WriteSchema)

 ' Return stream data

 Return ms.ToArray()

End Function

Private Function GetDataSet() As SmartDataSet

 ' Get physical location of the mdb file

http://forums.componentone.com/CS/forums/p/78384/225602.aspx#225602

106

 Dim mdb As String =

Path.Combine(Context.Request.PhysicalApplicationPath,

"App_Data\nwind.mdb")

 ' Check that the file exists

 If Not File.Exists(mdb) Then

 Dim msg As String = String.Format("Cannot find database file

{0}.", mdb)

 Throw New FileNotFoundException(msg)

 End If

 ' Make sure file is not read-only (source control often does

this...)

 Dim att As FileAttributes = File.GetAttributes(mdb)

 If (att And FileAttributes.[ReadOnly]) <> 0 Then

 att = att And Not FileAttributes.[ReadOnly]

 File.SetAttributes(mdb, att)

 End If

 ' Create and initialize the SmartDataSet

 Dim dataSet = New SmartDataSet()

 dataSet.ConnectionString = "provider=microsoft.jet.oledb.4.0;data

source=" & mdb

 Return dataSet

End Function

 C#
[WebMethod]

public byte[] GetData(string tables)

{

 // Create DataSet with connection string

 var ds = GetDataSet();

 // Load data into DataSet

 ds.Fill(tables.Split(','));

 // Persist to stream

 var ms = new System.IO.MemoryStream();

 ds.WriteXml(ms, XmlWriteMode.WriteSchema);

 // Return stream data

 return ms.ToArray();

}

SmartDataSet GetDataSet()

{

 // Get physical location of the mdb file

 string mdb = Path.Combine(

 Context.Request.PhysicalApplicationPath, @"App_Data\nwind.mdb");

 // Check that the file exists

 if (!File.Exists(mdb))

 {

 string msg = string.Format("Cannot find database file {0}.",

mdb);

 throw new FileNotFoundException(msg);

 }

 // Make sure file is not read-only (source control often does

this...)

 FileAttributes att = File.GetAttributes(mdb);

 if ((att & FileAttributes.ReadOnly) != 0)

 {

 att &= ~FileAttributes.ReadOnly;

 File.SetAttributes(mdb, att);

 }

 107

 // Create and initialize the SmartDataSet

 var dataSet = new SmartDataSet();

 dataSet.ConnectionString = "provider=microsoft.jet.oledb.4.0;data

source=" + mdb;

 return dataSet;

}

This code will create a dataset and take data from the database.

13. Right-click the .Web project (for example ComponentOneDataGrid.Web) and select Build from the

context menu. Note that you'll now be done with the ComponentOneDataGrid.Web project and will
return to working with the ComponentOneDataGrid project.

 What You've Accomplished

In this step you've added a database to your project and created a Web Service. In the next step you'll finish
connecting the Web Service to your project and you'll run your application.

Step 3 of 3: Connecting the Web Service

In the previous step you created a Web Service and added a database to your project. In this step you'll continue by

linking the Web Service to your application. Note that this step requires ComponentOne Data for Silverlight.

To set up your project, complete the following steps:

1. In the Solution Explorer, expand the project's node, right-click the project name (for example

ComponentOneDataGrid) and select Add Reference from the context menu.

2. In the Add Reference dialog box, add a reference to the C1.Silverlight.Data assembly and click OK.

3. In the Solution Explorer, right-click the project name and select Add Service Reference from the context

menu.

4. In the Add Service Reference dialog box click the Discover button. The DataService.asmx file will appear
in the list of Services.

5. In the Namespace text box, change the default value to "DataService" and click the OK button to save
your settings and close the dialog box.

6. In the Solution Explorer, expand the MainPage.xaml node and double-click the MainPage.xaml.cs or

MainPage.xaml.vb file to open it in the Code Editor.

7. Add the following import statements at the top of the file:

 Visual Basic
Imports System.IO

Imports C1.Silverlight.Data

Imports ComponentOneDataGrid.DataService ' ComponentOneDataGrid is the

project's namespace, change this if the name of your project is

different.

 C#
using System.IO;

using C1.Silverlight.Data;

using ComponentOneDataGrid.DataService; // ComponentOneDataGrid is the

project's namespace, change this if the name of your project is

different.

8. Add LoadData(); to the MainPage constructor so it appears like the following:

 Visual Basic
Public Sub New()

 InitializeComponent()

 LoadData()

108

End Sub

 C#
public MainPage()

{

 InitializeComponent();

 LoadData();

}

9. Add the LoadData and svc_GetDataCompleted methods to retrieve data from the Web Service:

 Visual Basic
Private _ds As DataSet = Nothing

Private Sub LoadData()

 ' Invoke Web Service

 Dim svc = GetDataService()

 AddHandler svc.GetDataCompleted, AddressOf svc_GetDataCompleted

 'svc.GetDataAsync("Categories,Products,Employees");

 svc.GetDataAsync("Employees")

End Sub

Private Sub svc_GetDataCompleted(sender As Object, e As

GetDataCompletedEventArgs)

 ' Handle errors

 If e.[Error] IsNot Nothing Then

 _tbStatus.Text = "Error downloading data..."

 Return

 End If

 ' Parse data stream from server (DataSet as XML)

 _tbStatus.Text = String.Format("Got data, {0:n0} kBytes",

e.Result.Length / 1024)

 Dim ms = New MemoryStream(e.Result)

 _ds = New DataSet()

 _ds.ReadXml(ms)

 ' Bind control to the data

 BindData()

End Sub

 C#
DataSet _ds = null;

void LoadData()

{

 // Invoke Web Service

 var svc = GetDataService();

 svc.GetDataCompleted += svc_GetDataCompleted;

 //svc.GetDataAsync("Categories,Products,Employees");

 svc.GetDataAsync("Employees");

}

void svc_GetDataCompleted(object sender, GetDataCompletedEventArgs e)

{

 // Handle errors

 if (e.Error != null)

 {

 _tbStatus.Text = "Error downloading data...";

 return;

 }

 // Parse data stream from server (DataSet as XML)

 _tbStatus.Text = string.Format("Got data, {0:n0} kBytes",

e.Result.Length / 1024);

 109

 var ms = new MemoryStream(e.Result);

 _ds = new DataSet();

 _ds.ReadXml(ms);

 // Bind control to the data

 BindData();

}

10. Implement the GetDataService() method by adding the following code:

 Visual Basic
' Get data service relative to current host/domain

Private Function GetDataService() As DataServiceSoapClient

 ' Increase buffer size

 Dim binding = New System.ServiceModel.BasicHttpBinding()

 binding.MaxReceivedMessageSize = 2147483647

 ' int.MaxValue

 binding.MaxBufferSize = 2147483647

 ' int.MaxValue

 ' Get absolute service address

 Dim uri As Uri =

C1.Silverlight.Extensions.GetAbsoluteUri("DataService.asmx")

 Dim address = New System.ServiceModel.EndpointAddress(uri)

 ' Return new service client

 Return New DataServiceSoapClient(binding, address)

End Function

 C#
// Get data service relative to current host/domain

DataServiceSoapClient GetDataService()

{

 // Increase buffer size

 var binding = new System.ServiceModel.BasicHttpBinding();

 binding.MaxReceivedMessageSize = 2147483647;

 // int.MaxValue

 binding.MaxBufferSize = 2147483647;

 // int.MaxValue

 // Get absolute service address

 Uri uri =

C1.Silverlight.Extensions.GetAbsoluteUri("DataService.asmx");

 var address = new System.ServiceModel.EndpointAddress(uri);

 // Return new service client

 return new DataServiceSoapClient(binding, address);

}

11. Implement the BindData() method by adding the following code:

 Visual Basic
Private Sub BindData()

 ' Get the tables

 Dim dtEmployees As DataTable = _ds.Tables("Employees")

 ' Populate categories grid

 _c1DataGrid.ItemsSource = dtEmployees.DefaultView

End Sub

 C#
void BindData()

{

 // Get the tables

 DataTable dtEmployees = _ds.Tables["Employees"];

110

 // Populate categories grid

 _c1DataGrid.ItemsSource = dtEmployees.DefaultView;

}

12. Run your application and observe that the grid appears bound to the Employees table of the Northwind

database:

 What You've Accomplished

Congratulations, you've completed this tutorial! In this tutorial you created a new Silverlight project, added an

Access database, and created a Web Service to bind the C1DataGrid control.

Binding the Grid to an RSS Feed
The following tutorial will walk you through the process of binding the C1DataGrid control to an RSS feed. Note
that in this example, you will be binding the grid to the ComponentOne Buzz RSS news feed at
http://helpcentral.componentone.com/CS/blogs/c1buzz/rss.aspx . Note that you can substitute another RSS
feed in the steps below, if you choose.

Complete the following steps:

1. In Visual Studio, select File | New | Project.

2. In the New Project dialog box, select a language in the left pane and in the templates list select Silverlight

Application. Enter a Name for your project, for example "C1DataGridRSS", and click OK. The New

Silverlight Application dialog box will appear.

3. Click OK to accept the default settings, close the New Silverlight Application dialog box, and create your

project.

4. In the Solution Explorer window, right-click the project name (for example, C1DataGridRSS) and select

Add Reference.

http://helpcentral.componentone.com/CS/blogs/c1buzz/rss.aspx

 111

5. In the Add Reference dialog box, locate the System.Xml.Linq library and click OK to add a reference to
your project.

6. In the XAML window of the project, place the cursor between the <Grid> and </Grid> tags and click

once.

7. Navigate to the Toolbox and double-click the C1DataGrid icon to add the grid control to

MainPage.xaml. The XAML markup will now look similar to the following:
<UserControl xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml"

x:Class="C1DataGrid.MainPage"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Width="400"

Height="300">

 <Grid x:Name="LayoutRoot" Background="White">

 <c1:C1DataGrid></c1:C1DataGrid>

 </Grid>

</UserControl>

Note that the C1.Silverlight.DataGrid namespace and <c1:C1DataGrid></c1:C1DataGrid> tags

have been added to the project.

8. If the <c1:C1DataGrid> tag includes existing content, delete it so it appears similar to the following:
<c1:C1DataGrid></c1:C1DataGrid>

9. Give your grid a name by adding x:Name="c1grid" to the <c1:C1DataGrid> tag so that it appears

similar to the following:
<c1:C1DataGrid x:Name="c1grid">

By giving the control a unique identifier, you'll be able to access the C1DataGrid control in code.

10. Add AutoGenerateColumns="True" to the <c1:C1DataGrid> tag so that it appears similar to the

following:
<c1:C1DataGrid x:Name="c1grid" AutoGenerateColumns="True">

This way the grid will automatically generate and display data from the data source.

11. In the Solution Explorer, expand the MainPage.xaml node and double-click the MainPage.xaml.cs (or

MainPage.xaml.vb) file to open it in the Code Editor.

12. Add the following import statement at the top of the file:

 Visual Basic
Imports System.Xml.Linq

 C#
using System.Xml.Linq;

13. In the MainPage constructor, add an event handler and set up a WebClient object to read from the RSS
feed with the following code:

 Visual Basic
Public Sub New()

 InitializeComponent()

 Dim client As New WebClient()

 Dim uri As New

Uri("http://helpcentral.componentone.com/CS/blogs/c1buzz/rss.aspx")

 AddHandler client.DownloadStringCompleted, AddressOf

client_DownloadStringCompleted

 client.DownloadStringAsync(uri)

End Sub

 C#
public MainPage()

112

{

 InitializeComponent();

 WebClient client = new WebClient();

 Uri uri = new

Uri("http://helpcentral.componentone.com/CS/blogs/c1buzz/rss.aspx");

 client.DownloadStringCompleted += new

DownloadStringCompletedEventHandler(client_DownloadStringCompleted);

 client.DownloadStringAsync(uri);

}

Note that you can substitute another RSS feed for the ComponentOne Buzz feed, if you choose.

14. Add the News class:

 Visual Basic
Public Class News

 Public Property Title() As String

 Get

 Return m_Title

 End Get

 Set(ByVal value As String)

 m_Title = Value

 End Set

 End Property

 Private m_Title As String

 Public Property Link() As String

 Get

 Return m_Link

 End Get

 Set(ByVal value As String)

 m_Link = Value

 End Set

 End Property

 Private m_Link As String

End Class

 C#
public class News

{

 public string Title { get; set; }

 public string Link { get; set; }

}

15. Add the client_DownloadStringCompleted event handler:

 Visual Basic
Private Sub client_DownloadStringCompleted(ByVal sender As Object,

ByVal e As DownloadStringCompletedEventArgs)

 Dim xmlNews As XDocument = XDocument.Parse(e.Result)

 Dim news = From story In xmlNews.Descendants("item") _

 Select New News With {.Title = story.Element("title").Value, .Link

= story.Element("link").Value}

 c1grid.ItemsSource = news

End Sub

 C#
void client_DownloadStringCompleted(object sender,

DownloadStringCompletedEventArgs e)

{

 XDocument xmlNews = XDocument.Parse(e.Result);

 113

 var news = from story in xmlNews.Descendants("item")

 select new News

 {

 Title = (string)story.Element("title"),

 Link = (string)story.Element("link")

 };

 c1grid.ItemsSource = news;

}

16. Run your application and observe that the grid appears bound to the ComponentOne Buzz RSS news
feed:

 What You've Accomplished

Congratulations, you've completed this tutorial! In this topic you created a new Silverlight project, added a

C1DataGrid control, and learned how to bind the grid to an RSS feed.

Creating a Master/Detail View
The following tutorial will walk you through using the C1DataGrid control to present data in a master/detail view
using the row details feature.

The following example shows a set of product categories loaded from a XML file using LINQ to XML. For each
row in the main grid (categories), a list of products is loaded and shown in the detail view using a second

C1DataGrid control. The detail data is loaded when the detail view of a category row changes.

For more information, see the C1DataGrid_Demo sample installed with ComponentOne Studio for Silverlight.

Step 1 of 3: Setting up the Master/Detail Grid

In this step you'll begin in Visual Studio to create a Silverlight grid application using ComponentOne DataGrid

for Silverlight. You'll create a new Silverlight project and add the C1DataGrid control to your application.

To set up your project and add a C1DataGrid control to your application, complete the following steps:

1. In Visual Studio, select File | New | Project.

114

2. In the New Project dialog box, select a language in the left pane (in this example, C# is used), and in the

templates list select Silverlight Application. Enter "MasterDetail" in the Name text box, and click OK.

The New Silverlight Application dialog box will appear.

3. Click OK to accept the default settings, close the New Silverlight Application dialog box, and create your
project.

4. In the XAML window of the project, place the cursor between the <Grid> and </Grid> tags and click

once.

5. Navigate to the Toolbox and double-click the C1DataGrid icon to add the grid control to

MainPage.xaml. The XAML markup will now look similar to the following:
<UserControl xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml"

x:Class="MasterDetail.MainPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480">

 <Grid x:Name="LayoutRoot">

 <c1:C1DataGrid></c1:C1DataGrid>

 </Grid>

</UserControl>

6. If the <c1:C1DataGrid> tag includes existing content, delete it so it appears similar to the following:
<c1:C1DataGrid></c1:C1DataGrid>

7. Give your grid a name by adding x:Name="c1dg" to the <c1:C1DataGrid> tag so that it appears

similar to the following:
<c1:C1DataGrid x:Name="c1dg">

By giving the control a unique identifier, you'll be able to access the C1DataGrid control in code.

8. Add CanUserAddRows="False" to the <c1:C1DataGrid> tag so that it appears similar to the

following:
<c1:C1DataGrid x:Name="c1dg" CanUserAddRows="False">

Users will not be able to add new rows to the grid.

9. Add Margin="5" to the <c1:C1DataGrid> tag so that it appears similar to the following:
<c1:C1DataGrid x:Name="c1dg" CanUserAddRows="False" Margin="5">

This will add a margin around the grid.

 What You've Accomplished

You've successfully created a basic grid application. In the next step you'll add a XML data source to your project.

Step 2 of 3: Adding a Data Source to the Project

In this step you'll add a data source to your application and add external files to set up the data source. Note that to

simplify the tutorial, this step uses files included with the C1DataGrid_Demo sample included with the Studio for

Silverlight installation; by default, products.xml and Data.cs will be installed in the Documents or My

Documents folder in the ComponentOne Samples\Studio for

Silverlight\C1.Silverlight.DataGrid\C1DataGrid_Demo\C1DataGrid_Demo directory.

To add a data source, complete the following steps:

1. In the Solution Explorer window, right-click the MasterDetail project and select Add | New Folder.

Rename the folder "Resources".

2. In the Solution Explorer window, right-click the Resources folder and select Add | Existing Item.

 115

3. In the Add Existing Item dialog box, navigate to the C1DataGrid_Demo\Resources sample folder,

select the products.xml file, and click Add. This file provides that data you'll use in the project.

4. Select the products.xml file in the Solution Explorer, and in the Properties window set its Build Action

property to Embedded Resource.

5. In the Solution Explorer window, right-click the MasterDetail project and select Add | Existing Item.

6. In the Add Existing Item dialog box, navigate to the C1DataGrid_Demo sample folder, select the

Data.cs file, and click Add. This file contains code to set up the data source.

 What You've Accomplished

In this step you added an XML data source. In the next step, you'll set up the row details section and finalize the
application.

Step 3 of 3: Setting up Row Details

In this step you'll finish setting up the row details section of the grid. You'll add a RowDetailsTemplate to set the
appearance of the details row, and you'll add code to set up the details row behavior.

To set up row details, complete the following steps:

1. Add the following <c1:C1DataGrid.RowDetailsTemplate> between the

<c1:C1DataGrid></c1:C1DataGrid> tags so that it appears similar to the following:
<c1:C1DataGrid x:Name="c1dg" CanUserAddRows="False" Margin="5">

 <c1:C1DataGrid.RowDetailsTemplate>

 <DataTemplate>

 <c1:C1DataGrid HeadersVisibility="Column" Margin="5"

CanUserAddRows="False"/>

 </DataTemplate>

 </c1:C1DataGrid.RowDetailsTemplate>

</c1:C1DataGrid>

This template will customize the row details section display.

2. Add LoadedRowDetailsPresenter="c1dg_LoadedRowDetailsPresenter"

LoadingRow="c1dg_LoadingRow" to the <c1:C1DataGrid> tag so that it appears similar to the

following:
<c1:C1DataGrid x:Name="c1dg" CanUserAddRows="False"

LoadedRowDetailsPresenter="c1dg_LoadedRowDetailsPresenter"

LoadingRow="c1dg_LoadingRow">

Later you'll add handlers for these events in code.

3. In the Solution Explorer, right-click the project and select Add Reference. In the Add Reference dialog

box, locate System.Xml.Linq and System.ComponentModel.DataAnnotations and click OK to add the
reference.

4. Right-click the page and select View Code in the context menu to open the Code Editor.

5. In the Code Editor, import the following namespaces:

 C#
using System.Xml.Linq;

using C1.Silverlight.DataGrid;

using C1DataGrid_Demo;

6. Add code to the Page constructor to set the ItemsSource property:

 C#
public MainPage()

{

116

 InitializeComponent();

 c1dg.ItemsSource = Data.GetSubCategories(null).Take(10);

}

7. Add code for the c1dg_LoadedRowDetailsPresenter event to the MainPage class:

 C#
private void c1dg_LoadedRowDetailsPresenter(object sender,

C1.Silverlight.DataGrid.DataGridRowDetailsEventArgs e)

{

 if (e.Row.DetailsVisibility == Visibility.Visible)

 {

 C1.Silverlight.DataGrid.C1DataGrid detailGrid =

e.DetailsElement as C1.Silverlight.DataGrid.C1DataGrid;

 if (detailGrid.ItemsSource == null)

 {

 int subcategory = (e.Row.DataItem as

Subcategory).ProductSubcategoryID;

 detailGrid.ItemsSource = Data.GetProducts((product) =>

product.Element("ProductSubcategoryID") != null &&

product.Element("ProductSubcategoryID").Value != "" &&

int.Parse(product.Element("ProductSubcategoryID").Value) ==

subcategory).Take(10);

 }

 }

}

8. Add code for the c1dg_LoadingRow event to the MainPage class to set the row details visibility for the
first row:

 C#
private void c1dg_LoadingRow(object sender, DataGridRowEventArgs e)

{

 if (e.Row.Index == 0)

 {

 e.Row.DetailsVisibility = Visibility.Visible;

 }

}

 What You've Accomplished

If you save and run your application you'll observe that the grid is now populated with data from the products.xml
file, and that the first row's details section is visible:

 117

To collapse the row details section or expand another's row detail section, click the arrow icon in the row header of
a row:

You've completed this tutorial and learned how to set up row details in the grid to display a master/detail grid
view.

Localizing the Grid
Localizing ComponentOne DataGrid for Silverlight for various audiences is a fairly simple process as
localization in Silverlight is based on the standard .NET localization. For more information about localization, see
Localizing the Application (page 76). In this tutorial, you'll localize the visible grid strings in an existing
application.

Step 1 of 3: Setting up the Localized Grid

In this step you'll create a Silverlight grid application using ComponentOne DataGrid for Silverlight. You'll

create a new Silverlight project, add the C1DataGrid control to your application, and bind the grid.

Complete the following steps:

1. In Visual Studio, select File | New | Project.

2. In the New Project dialog box, select a language in the left pane, and in the templates list select

Silverlight Application. Enter "C1DataGridLocalization" in the Name text box, and click OK. The New

Silverlight Application dialog box will appear.

3. Click OK to close the New Silverlight Application dialog box and create your project.

118

4. In the <UserControl> tag, replace Width="400" (or d:DesignWidth="400") with Width="450"

to increase its size.

5. In the XAML window of the project, place the cursor between the <Grid> and </Grid> tags and click

once.

6. Navigate to the Toolbox and double-click the C1DataGrid icon to add the grid control to

MainPage.xaml. The XAML markup will now look similar to the following:
<UserControl xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml"

x:Class="C1DataGridLocalization.MainPage"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Width="450"

Height="300">

 <Grid x:Name="LayoutRoot">

 <c1:C1DataGrid></c1:C1DataGrid>

 </Grid>

</UserControl>

7. If the <c1:C1DataGrid> tag includes existing content, delete it so it appears similar to the following:
<c1:C1DataGrid></c1:C1DataGrid>

8. Give your grid a name by adding x:Name="c1dg" to the <c1:C1DataGrid> tag so that it appears

similar to the following:
<c1:C1DataGrid x:Name="c1dg">

By giving the control a unique identifier, you'll be able to access the C1DataGrid control in code.

9. Add CanUserGroup="True" to the <c1:C1DataGrid> tag so that it appears similar to the following:
<c1:C1DataGrid x:Name="c1dg" CanUserGroup="True">

10. In the Solution Explorer, right-click the C1DataGridLocalization project and select Build.

11. In the Solution Explorer, right-click the MainPage.xaml file and click View Code in the context menu to
open the Code Editor.

12. Add the following code to the project to create the Data class:

 Visual Basic
Public Class Data

 Private _ProductName As String

 Public Property ProductName() As String

 Get

 Return _ProductName

 End Get

 Set(ByVal value As String)

 _ProductName = value

 End Set

 End Property

 Private _Description As String

 Public Property Description() As String

 Get

 Return _Description

 End Get

 Set(ByVal value As String)

 _Description = value

 End Set

 End Property

 Private _Quantity As Integer

 Public Property Quantity() As Integer

 Get

 Return _Quantity

 119

 End Get

 Set(ByVal value As Integer)

 _Quantity = value

 End Set

 End Property

 Private _InStock As Boolean

 Public Property InStock() As Boolean

 Get

 Return _InStock

 End Get

 Set(ByVal value As Boolean)

 _InStock = value

 End Set

 End Property

End Class

 C#
public class Data

{

 public string ProductName { get; set; }

 public string Description { get; set; }

 public int Quantity { get; set; }

 public bool InStock { get; set; }

}

13. Add the following code to the MainPage constructor to populate the grid:

 Visual Basic
Public Sub New()

 InitializeComponent()

 ' Add data to a data source.

 Dim source As New List(Of Data)()

 Dim itemsCount As Integer = 25

 For i As Integer = 0 To itemsCount - 1

 source.Add(New Data With

 {

 .ProductName = "Name",

 .Description = "Description",

 .Quantity = i,

 .InStock = (i Mod 2 = 0)

 })

 Next

 ' Set the grid's ItemsSource property.

 c1dg.ItemsSource = source

End Sub

 C#
public MainPage()

{

 InitializeComponent();

 // Add data to a data source.

 List<Data> source = new List<Data>();

 int itemsCount = 25;

 for (int i = 0; i < itemsCount; i++)

 {

120

 source.Add(new Data()

 {

 ProductName = "Name",

 Description = "Description",

 Quantity = i,

 InStock = (i % 2 == 0)

 });

 }

 // Set the grid's ItemsSource property.

 c1dg.ItemsSource = source;

}

 What You've Accomplished

In this step you created a new Silverlight application, added a C1DataGrid control, and bound the control to a

data source. In the next step, you'll add a resource file to localize the grid.

Step 2 of 3: Adding a Resource File

In this step, you'll begin by adding a resource file to your application. Note that if you choose, you can add
multiple resources files to your project.

1. In the Solution Explorer, right-click the C1DataGridLocalization project and choose Add | New Folder.

2. Name the folder you just created "Resources".

3. Right-click the Resources folder, and in the context menu select Add | New Item.

4. In the Add New Item dialog box, select Resources File in the templates pane, name the file

"C1.Silverlight.DataGrid.resx", and click Add to add the file to your project.

5. If the resource file did not automatically open, double-click the file name in the Solution Explorer.

6. In the C1.Silverlight.DataGrid.es.resx file, add the following Names and Values:

Name Value

AddNewRow Click here to add a new row

CheckBoxFilter_Checked Checked:

ComboBoxFilter_SelectAll Select All

DateTimeFilter_End End

DateTimeFilter_Start Start

EmptyGroupPanel Drag a column here to group by that column

Filter_Clear Clear

Filter_Filter Filter

NumericFilter_And And

NumericFilter_Equals Equals

NumericFilter_GraterOrEquals Greater/Equals

NumericFilter_Greater Greater

NumericFilter_Less Less

NumericFilter_LessOrEquals Less/Equals

NumericFilter_NotEquals Not Equals

NumericFilter_Or Or

 121

TextFilter_Contains Contains

TextFilter_StartsWith Starts With

TextFilter_Equals Equals

TextFilter_NotEquals Not Equals

7. Save and close the resource file.

8. Right-click the Resources folder, and in the context menu select Add | New Item.

9. In the Add New Item dialog box, select Resources File in the templates pane, name the file

"C1.Silverlight.DataGrid.es.resx", and click Add to add the file to your project.

This file will localize the application to Spanish. For information on file naming, see Adding Resource
Files (page 76).

10. If the resource file did not automatically open, double-click the file name in the Solution Explorer.

11. In the C1.Silverlight.DataGrid.es.resx file, add the following Names and Values to add Spanish

localization:

Name Value

AddNewRow Cliquee aquí para agregar un nuevo renglón

CheckBoxFilter_Checked Seleccionado:

ComboBoxFilter_SelectAll Seleccionar todo

DateTimeFilter_End Fin

DateTimeFilter_Start Inicio

EmptyGroupPanel Arrastre una columna aquí para agrupar

Filter_Clear Borrar

Filter_Filter Filtrar

NumericFilter_And Y

NumericFilter_Equals Igual

NumericFilter_GraterOrEquals Mayor o igual

NumericFilter_Greater Mayor

NumericFilter_Less Menor

NumericFilter_LessOrEquals Menor o igual

NumericFilter_NotEquals Diferente

NumericFilter_Or O

TextFilter_Contains Contiene

TextFilter_StartsWith Empieza con

TextFilter_Equals Igual

TextFilter_NotEquals Diferente

12. Save and close the resource file.

 What You've Accomplished

122

In this step you added a new resource file to your application. In the next step you'll add the file's culture to the
project's supported cultures, and then set that culture to be the current culture.

Step 3 of 3: Setting the Culture

Once you've created resource files for your application, you will need to set the supported cultures for your project
and explicitly set the current culture of the project. To do so, complete the following steps:

1. In the Solution Explorer, right-click the C1DataGridLocalization project and select Unload Project.

Click Yes if Visual Studio asks you to save the project.

The project will appear grayed out and unavailable.

2. Right-click the project again, and select the Edit C1DataGridLocalization.csproj option.

In the .csproj file, locate the <SupportedCultures></SupportedCultures> tags. Add "es" in

between the tags, so they appear similar to the following:
<SupportedCultures>es</SupportedCultures>

3. Save and close the .csproj file.

4. In the Solution Explorer, right-click your project and choose Reload Project from the context menu.

The project will be reloaded and will now support the specified cultures.

5. In the Solution Explorer, right-click the MainPage.xaml file and click View Code in the context menu to

open the Code Editor.

6. Add the following using statements to the top of the file:

 Visual Basic
Imports System.Globalization

Imports System.Threading

 C#
using System.Globalization;

using System.Threading;

7. Add the following code to the MainPage constructor above the InitializeComponent() call to set the

CurrentUICulture property:

 Visual Basic
Thread.CurrentThread.CurrentUICulture = New CultureInfo("es")

 C#
Thread.CurrentThread.CurrentUICulture = new CultureInfo("es");

It should now look similar to the following:

 Visual Basic
Public Sub New()

 ' Set the culture.

 Thread.CurrentThread.CurrentUICulture = New CultureInfo("es")

 InitializeComponent()

 ' Add data to a data source.

 Dim source As New List(Of Data)()

 Dim itemsCount As Integer = 25

 For i As Integer = 0 To itemsCount - 1

 source.Add(New Data())

 Next

 ' Set the grid's ItemsSource property.

 c1dg.ItemsSource = source

End Sub

 123

 C#
public MainPage()

{

 // Set the culture.

 Thread.CurrentThread.CurrentUICulture = new CultureInfo("es");

 InitializeComponent();

 // Add data to a data source.

 List<Data> source = new List<Data>();

 int itemsCount = 25;

 for (int i = 0; i < itemsCount; i++)

 {

 source.Add(new Data()

 {

 ProductName = "Name",

 Description = "Description",

 Quantity = i,

 InStock = (i % 2 == 0)

 });

 }

 // Set the grid's ItemsSource property.

 c1dg.ItemsSource = source;

}

8. Save and run your application.

9. To observe some of the localized language strings, select the drop-down filter icon in the grid:

10. Click the drop-down arrow in the filter box to view additional strings:

124

 What You've Accomplished

In this step you added the file's culture to the project's supported cultures and set that culture to be the current
culture. In this tutorial you've learned how to localize an application. You created a resource file, set the project's
supported culture, and explicitly set the current culture in code.

Binding the Grid to a WCF RIA Services Data Source
The following tutorial will walk you through the process of binding the C1DataGrid control to a WCF RIA

Services data source. For more information, see the WCF RIA Services Data Binding (page 58) topic. Note that

this example will use files included in the C1DataGrid_Ria2010 sample installed with ComponentOne Studio for

Silverlight.

Step 1 of 3: Creating the Application and Adding the Data Source

In this step you'll create a new Silverlight project with WCF RIA services enabled, add a data source, and set up
the client-side project. Complete the following steps:

1. In Visual Studio 2010, select File | New | Project.

2. In the New Project dialog box, choose Visual C# in the left pane, and in the templates list select

Silverlight Application. Enter "C1DataGridRIA" in the Name text box, and click OK. The New

Silverlight Application dialog box will appear.

3. In the New Silverlight Application dialog box, check the Enable WCF RIA Services check box and click

OK to close the New Silverlight Application dialog box and create your project.

4. In the Solution Explorer, right-click the C1DataGridRIA.Web project and choose Add | New Folder.
Rename the folder "App_Data".

5. Right-click the App_Data folder and select Add | Existing Item.

6. In the Add Existing Item dialog box, navigate to where the ComponentOne samples are installed, by

default in the Documents or My Documents folder, and navigate to the ComponentOne Samples\Studio

for Silverlight 4.0\C1.Silverlight.DataGrid\C1DataGrid_Ria\C1DataGrid_Ria2010Web\App_Data

folder. Choose the NORTHWND.MDF file and click the Add button.

The database will be added to your project. Note that this is the standard Microsoft Northwind database.

7. In the Solution Explorer, right-click the C1DataGridRIA.Web project and choose Add | New Item.

8. In the Add New Item dialog box choose Data in the left list and choose ADO.NET Entity Data Model

from the list of data templates. Name the file "NorthwindModel" and click Add to add the file to your
project.

 125

9. The Entity Data Model Wizard should appear. Choose the Generate from database option and click

Next.

10. In the Choose Your Data Connection screen, confirm that the NORTHWND.MDF file is selected. If it

is not selected, choose New Connection and locate the file. Save the connection string with the default

name, "NORTHWNDEntities", and click Next.

11. In the Choose Your Database Objects screen, select the Tables check box to choose the Products table.

Click Finish.

12. Choose Build | Rebuild Solution to build the entire solution and make sure the autogenerated RIA
Services files get created.

13. In the Solution Explorer, right-click the C1DataGridRIA.Web project and choose Add | New Item.

14. In the Add New Item dialog box choose Web in the left list and choose Domain Service Class from the

list of code templates. Name the file "NorthwindService" and click Add to add the file to your project. The

Add New Domain Service Class dialog box will appear.

15. Iin the Add New Domain Service Class dialog box, select NorthwindEntitiesas DataContext item and

select the Enable client access check box. Check the Product entity and Enable editing check boxes and

click OK.

16. Save the project and choose Build | Rebuild Solution to ensure everything is working correctly.

 What You've Accomplished

In this step you added a new RIA data source to your application. In the next step you'll add the C1DataGrid
control to the application.

Step 2 of 3: Adding the C1DataGrid control

In the previous step you created a new Silverlight application with WCF RIA services enabled and added a new

data source. In this step you'll set up your application and add the C1DataGrid control to the application.
Complete the following steps:

1. In the Solution Explorer, right click the C1DataGridRIA project and choose Add Reference. The Add

Reference dialog box will appear.

2. In the Add Reference dialog box, select the following assemblies and then click OK:

 System.Windows.Controls.Data

 System.Windows.Controls.DomainServices

 C1.Silverlight

 C1.Silverlight.DataGrid

 C1.Silverlight.DataGrid.Ria

This will add references to the project for the selected assemblies.

3. In the Solution Explorer, double-click the MainPage.xaml file to open it.

4. In the XAML window of the project, update the UserControl tag so it appears similar to the following:

 XAML
<UserControl x:Class="C1DataGridRIA.MainPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-

compatibility/2006"

126

 xmlns:data="clr-

namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data

"

 xmlns:ria="clr-

namespace:System.Windows.Controls;assembly=System.Windows.Controls.Doma

inServices"

 xmlns:c1data="clr-

namespace:C1.Silverlight.DataGrid;assembly=C1.Silverlight.DataGrid"

 xmlns:adapter="clr-

namespace:C1.Silverlight.DataGrid.Ria;assembly=C1.Silverlight.DataGrid.

Ria"

 xmlns:local="clr-namespace:C1DataGridRIA.Web"

 mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480">

This markup will add references to the assemblies you added, and resize the UserControl.

5. Add the following markup just after the Grid tag to create a row definition:

 XAML
<Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

</Grid.RowDefinitions>

This markup will set the layout of the page.

6. Add the following markup within the Grid tag and just under the row definitions to create a

C1RiaAdaptor:

 XAML

<!-- RIA Data Source -->

<adapter:C1RiaAdapter x:Name="_adapter" DataGrid="{Binding

ElementName=_dataGrid}">

 <ria:DomainDataSource x:Name="_myDataSource"

QueryName="GetProducts" PageSize="8">

 <ria:DomainDataSource.DomainContext>

 <local:NorthwindContext/>

 </ria:DomainDataSource.DomainContext>

 <ria:DomainDataSource.GroupDescriptors>

 <ria:GroupDescriptor PropertyPath="CategoryID"/>

 <ria:GroupDescriptor PropertyPath="Discontinued"/>

 </ria:DomainDataSource.GroupDescriptors>

 <ria:DomainDataSource.SortDescriptors>

 <ria:SortDescriptor PropertyPath="ProductName"

Direction="Descending"/>

 </ria:DomainDataSource.SortDescriptors>

 <ria:DomainDataSource.FilterDescriptors>

 <ria:FilterDescriptor PropertyPath="UnitPrice"

Operator="IsGreaterThanOrEqualTo" Value="18"/>

 <ria:FilterDescriptor PropertyPath="ProductName"

Operator="Contains" Value="C"/>

 127

 </ria:DomainDataSource.FilterDescriptors>

 </ria:DomainDataSource>

</adapter:C1RiaAdapter>

This markup will add the RIA data source.

7. Add the following markup within the Grid tag and under the C1RiaAdaptor tag to add a header to the
page:

 XAML

<!-- Header -->

<Border Grid.Row="0" Height="40" Background="LightBlue">

 <TextBlock Text="CollectionView adapter for C1DataGrid: RIA

Services"

 Margin="10 0 0 0" FontSize="15" FontWeight="Bold"

VerticalAlignment="Center"/>

</Border>

8. Add the following markup within the Grid tag and under the Header to add a layout Grid to the page:

 XAML

<!-- Content -->

<Grid Grid.Row="1" Margin="20">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

 </Grid.RowDefinitions>

</Grid>

You will add the C1DataGrid control within this layout grid.

9. Add the following markup within within the content layout Grid you just added (just above the </Grid>

tag) to add a standard DataPager control to the page:

 XAML

<!-- DataPager -->

 <data:DataPager x:Name="_dataPager" Source="{Binding Data,

ElementName=_myDataSource}" BorderThickness="0" Background="White"/>

10. Add the following markup within within the content layout Grid and just after the DataPager to add a

C1DataGrid control to the page:

 XAML

<!-- C1DataGrid -->

<c1data:C1DataGrid x:Name="_dataGrid" CanUserGroup="True"

AutoGenerateColumns="False" Grid.Row="1"

128

 CanUserAddRows="True" CanUserEditRows="True"

CanUserRemoveRows="True"

 ItemsSource="{Binding Data, ElementName=_adapter}"

 BeginningRowEdit="_dataGrid_BeginningRowEdit"

CommittingRowEdit="_dataGrid_CommittingRowEdit"

 CancelingRowEdit="_dataGrid_CancelingRowEdit"

RowsDeleted="_dataGrid_RowsDeleted" >

 <c1data:C1DataGrid.Columns>

 <c1data:DataGridNumericColumn Binding="{Binding CategoryID,

Mode=TwoWay}" SortMemberPath="CategoryID" FilterMemberPath="CategoryID"

Header="CategoryID"/>

 <c1data:DataGridCheckBoxColumn Binding="{Binding Discontinued,

Mode=TwoWay}" SortMemberPath="Discontinued"

FilterMemberPath="Discontinued" Header="Discontinued"/>

 <c1data:DataGridTextColumn Binding="{Binding ProductName,

Mode=TwoWay}" SortMemberPath="ProductName"

FilterMemberPath="ProductName" Header="ProductName"/>

 <c1data:DataGridTextColumn Binding="{Binding QuantityPerUnit,

Mode=TwoWay}" SortMemberPath="QuantityPerUnit"

FilterMemberPath="QuantityPerUnit" Header="QtyPerUnit"/>

 <c1data:DataGridNumericColumn Binding="{Binding UnitPrice,

Mode=TwoWay}" SortMemberPath="UnitPrice" FilterMemberPath="UnitPrice"

Header="UnitPrice"/>

 </c1data:C1DataGrid.Columns>

</c1data:C1DataGrid>

This C1DataGrid control is bound to the database added earlier and includes defined and bound
columns.

11. Add the following markup within within the content layout Grid and just after the C1DataGrid to add a
text box and two buttons to the page:

 XAML

<!-- Change Text -->

<TextBox x:Name="_changeText" Margin="0 4 0 0" Grid.Row="2"/>

<!-- Reject Button -->

<Button x:Name="_rejectButton" Content="Reject Changes"

IsEnabled="False" Click="_rejectButton_Click" Width="120"

HorizontalAlignment="Right" Margin="0 4 130 0" Grid.Row="3"/>

<!-- Submit Button -->

<Button x:Name="_submitButton" Content="Submit Changes"

IsEnabled="False" Click="_submitButton_Click" Width="120"

HorizontalAlignment="Right" Margin="0 4 0 0" Grid.Row="3"/>

At run time, the text box will display the location of any changes made to the grid and the buttons will
allow you to reject or apply any changes made to the grid at run time. In the next step you'll add code to
implement the XAML you added to the application.

 129

12. Right-click the MainPage.xaml page and choose View Code to open the MainPage.xaml.cs (or

MainPage.xaml.vb) page in the Code Editor.

13. Add the imports statement to the top of the page:

 Visual Basic
Imports C1.Silverlight.DataGrid

Imports System.ServiceModel.DomainServices.Client

 C#
using C1.Silverlight.DataGrid;

using System.ServiceModel.DomainServices.Client;

14. Add the following code within the MainPage class to implement the controls that were added in XAML:

 Visual Basic
Private Sub _submitButton_Click(sender As Object, e As RoutedEventArgs)

 ' Submit changes to the server

 _dataGrid.IsLoading = True

 _myDataSource.DomainContext.SubmitChanges(AddressOf

OnSubmitCompleted, Nothing)

End Sub

Private Sub _rejectButton_Click(sender As Object, e As RoutedEventArgs)

 ' Reject changes

 _myDataSource.DomainContext.RejectChanges()

 CheckChanges()

 _dataGrid.Reload(False)

End Sub

' Disable submit/reject buttons when there are pending changes in the

row

Private Sub _dataGrid_BeginningRowEdit(sender As Object, e As

DataGridEditingRowEventArgs)

 _submitButton.IsEnabled = False

 _rejectButton.IsEnabled = False

End Sub

' Enable/disable submit/reject buttons after pending changes are

committed

Private Sub _dataGrid_CommittingRowEdit(sender As Object, e As

DataGridEditingRowEventArgs)

 CheckChanges()

End Sub

' Enable/disable submit/reject buttons after pending changes are

canceled

Private Sub _dataGrid_CancelingRowEdit(sender As Object, e As

DataGridEditingRowEventArgs)

 CheckChanges()

End Sub

' Enable/disable submit/reject buttons after rows deleted

Private Sub _dataGrid_RowsDeleted(sender As Object, e As

DataGridRowsDeletedEventArgs)

 CheckChanges()

End Sub

' Check the pending changes to submit/reject and enable/disable buttons

according to this.

Private Sub CheckChanges()

 Dim changeSet As EntityChangeSet =

_myDataSource.DomainContext.EntityContainer.GetChanges()

 _changeText.Text = changeSet.ToString()

130

 Dim hasChanges As Boolean = _myDataSource.HasChanges

 _submitButton.IsEnabled = hasChanges

 _rejectButton.IsEnabled = hasChanges

End Sub

' Check for errors when submitting changes to the server

Private Sub OnSubmitCompleted(so As SubmitOperation)

 _dataGrid.IsLoading = False

 If so.HasError Then

 MessageBox.Show(String.Format("Submit Failed: {0}",

so.[Error].Message))

 so.MarkErrorAsHandled()

 End If

 CheckChanges()

End Sub

 C#
private void _submitButton_Click(object sender, RoutedEventArgs e)

{

 // Submit changes to the server

 _dataGrid.IsLoading = true;

 _myDataSource.DomainContext.SubmitChanges(OnSubmitCompleted, null);

}

private void _rejectButton_Click(object sender, RoutedEventArgs e)

{

 // Reject changes

 _myDataSource.DomainContext.RejectChanges();

 CheckChanges();

 _dataGrid.Reload(false);

}

// Disable submit/reject buttons when there are pending changes in the

row

private void _dataGrid_BeginningRowEdit(object sender,

DataGridEditingRowEventArgs e)

{

 _submitButton.IsEnabled = false;

 _rejectButton.IsEnabled = false;

}

// Enable/disable submit/reject buttons after pending changes are

committed

private void _dataGrid_CommittingRowEdit(object sender,

DataGridEditingRowEventArgs e)

{

 CheckChanges();

}

// Enable/disable submit/reject buttons after pending changes are

canceled

private void _dataGrid_CancelingRowEdit(object sender,

DataGridEditingRowEventArgs e)

{

 CheckChanges();

}

// Enable/disable submit/reject buttons after rows deleted

private void _dataGrid_RowsDeleted(object sender,

DataGridRowsDeletedEventArgs e)

{

 CheckChanges();

}

 131

// Check the pending changes to submit/reject and enable/disable

buttons according to this.

private void CheckChanges()

{

 EntityChangeSet changeSet =

_myDataSource.DomainContext.EntityContainer.GetChanges();

 _changeText.Text = changeSet.ToString();

 bool hasChanges = _myDataSource.HasChanges;

 _submitButton.IsEnabled = hasChanges;

 _rejectButton.IsEnabled = hasChanges;

}

// Check for errors when submitting changes to the server

private void OnSubmitCompleted(SubmitOperation so)

{

 _dataGrid.IsLoading = false;

 if (so.HasError)

 {

 MessageBox.Show(string.Format("Submit Failed: {0}",

so.Error.Message));

 so.MarkErrorAsHandled();

 }

 CheckChanges();

}

 What You've Accomplished

You learned how to bind the C1DataGrid control to an RIA Services data source. You created a Silverlight

application, added the data source, and added and implemented the C1DataGrid control. In the next step you'll
run the application, to view its run time interactions.

Step 3 of 3: Running the Application

In the previous steps you created a new Silverlight application with WCF RIA services enabled, added a new data

source, and added the C1DataGrid control to the application. In this step you'll run the application, to view its run
time interactions. Complete the following steps:

1. Save the project and choose Debug | Start Debugging to run the application. It will appear similar to the

following image:

132

2. At run time, click on a cell in the ProductName column and delete the text from a cell. Notice that
validation text appears:

3. Enter text in the cell in the ProductName column you deleted:

 133

Click away drom the cell you edited and notice that the box under the grid notes that one cell in the grid
has been modified and the buttons below the grid are now active.

4. Click the Reject Changes button to discard the changes you made.

5. Click an item in the UnitPrice columm and use the up and down arrows to change the value of the cell:

6. Click away from the cell and click the Submit Changes button to save your changes to the data.

 What You've Accomplished

In this tutorial you learned how to bind the C1DataGrid control to an RIA Services data source. You created a

Silverlight application, added the data source, and added and implemented the C1DataGrid control.

Implementing Stealth Paging
With paging you can only load the necessary data to fit one page. See Paging Grid Data (page 80) for details.
Stealth paging is a little different; you can achieve paging functionality with a scrollbar. As the user scrolls down

the grid, more data is fetched as needed, just like with paging. C1DataGrid supports server-side sorting and
filtering so you can still achieve these functionalities without sacrificing performance. In this tutorial you'll create a

Silverlight application with a C1DataGrid control that implements stealth paging functionality.

Step 1 of 3: Creating the User Interface

In this step you'll begin in Visual Studio to create a Silverlight grid application. You'll then continue by creating

and customizing the application's user interface (UI) and adding the C1DataGrid control to your project.

To set up your project, complete the following steps:

1. In Visual Studio, select File | New | Project.

2. In the New Project dialog box, select a language in the left pane and in the templates list select Silverlight

Application. Enter a Name for your project "StealthPaging", and click OK. The New Silverlight

Application dialog box will appear.

3. Click OK to accept the default settings, close the New Silverlight Application dialog box, and create your

project.

4. Navigate to the Solution Explorer, right-click the StealthPaging project, and select Add Reference from
the context menu.

5. In the Add Reference dialog box locate the System.Runtime.Serialization assembly and click the OK
button to add a reference to your project. The dialog box will close and the reference will be added.

6. If the MainPage.xaml file is not currently open, navigate to the Solution Explorer and double-click on the

MainPage.xaml item.

7. In the XAML view, place the cursor just after the <Grid x:Name="LayoutRoot"

Background="White"> tag and add the following markup:
<!-- Grid Layout-->

<Grid.RowDefinitions>

 <RowDefinition Height="*" />

134

 <RowDefinition Height="Auto" />

</Grid.RowDefinitions>

This row definition will define the layout of your application.

8. In the XAML window of the project, place the cursor just above the </Grid> tag and click once.

9. Navigate to the Toolbox and double-click the C1DataGrid icon to add the grid control to

MainPage.xaml. The XAML markup will now look similar to the following:
<UserControl x:Class="StealthPaging.MainPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-

compatibility/2006"

 mc:Ignorable="d"

 d:DesignHeight="300" d:DesignWidth="400"

xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml">

 <Grid x:Name="LayoutRoot" Background="White">

 <!-- Grid Layout-->

 <Grid.RowDefinitions>

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <c1:C1DataGrid />

 </Grid>

</UserControl>

Note that the C1.Silverlight.DataGrid namespace and <c1:C1DataGrid /> tag has been added to the

project.

10. If the <c1:C1DataGrid> tag includes existing content, delete it so it appears similar to the following:
<c1:C1DataGrid />

11. Give your grid a name by adding x:Name="peopleDataGrid" to the <c1:C1DataGrid> tag so that

it appears similar to the following:
<c1:C1DataGrid x:Name="peopleDataGrid" />

By giving the control a unique identifier, you'll be able to access the C1DataGrid control in code.

12. Customize your grid by adding AutoGenerateColumns="True" CanUserAddRows="False" to

the <c1:C1DataGrid> tag so that it appears similar to the following:
<c1:C1DataGrid x:Name="peopleDataGrid" AutoGenerateColumns="True"

CanUserAddRows="False" />

This markup will set the grid to generate columns automatically and will disable adding new rows.

13. Add the following markup just after the </c1:C1DataGrid> tag:
<TextBlock x:Name="txtStatus" Grid.Row="1" Text="Ready." Margin="0,5,0,0"

/>

This TextBlock will be used to display status information text.

 What You've Accomplished

If you run your application you'll observe that your page includes a grid and text below the grid. You've
successfully created a basic grid application, but the grid is blank and contains no data. In the next steps you'll bind
the grid to a data source and add stealth paging in code.

Step 2 of 3: Adding a Web Service

In this step you'll add a data source to your project, and begin the process of binding the grid.

 135

To set up your project, complete the following steps:

1. Navigate to the Solution Explorer, right-click the StealthPaging.Web project, and select Add Reference
from the context menu.

2. In the Add Reference dialog box locate the System.Runtime.Serialization assembly and click the OK

button to add a reference to your project. The dialog box will close and the reference will be added.

3. In the Solution Explorer right-click the StealthPaging.Web project, and select Add | New Item.

4. In the left pane of the Add New Item dialog box, select the Web item.

5. In the templates list, select Web Service, name the Web Service "DataWebService.asmx", and click the

Add button. Note that the Web Service file will be added to your project and automatically opened.

6. In the DataWebService.asmx file, add the following using statements at the top of the file:

 Visual Basic
Imports System.Runtime.Serialization

 C#
using System.Runtime.Serialization;

7. In the DataWebService.asmx file, replace the code in the StealthPaging.Web namespace with the

following::

 Visual Basic
' To allow this Web Service to be called from script, using ASP.NET

AJAX, uncomment the following line.

' <System.Web.Script.Services.ScriptService()> _

<System.Web.Services.WebService(Namespace:="http://tempuri.org/")> _

<System.Web.Services.WebServiceBinding(ConformsTo:=WsiProfiles.BasicPro

file1_1)> _

<ToolboxItem(False)> _

Public Class DataWebService

 Inherits System.Web.Services.WebService

 <WebMethod()> _

 Public Function GetData(startRow As Integer, endRow As

Integer) As List(Of ServerPerson)

 Dim personList As New List(Of ServerPerson)()

 For i As Integer = startRow To endRow - 1

 personList.Add(New ServerPerson() With { _

 .FirstName = String.Format("First Name {0}",

i), _

 .LastName = String.Format("Last Name {0}",

i), _

 .Age = i, _

 .City = String.Format("City {0}", i) _

 })

 Next

 Return personList

 End Function

 End Class

 <DataContract> _

 Public Class ServerPerson

 Private _firstName As String

 <DataMember> _

 Public Property FirstName() As String

136

 Get

 Return _firstName

 End Get

 Set

 _firstName = value

 End Set

 End Property

 Private _lastName As String

 <DataMember> _

 Public Property LastName() As String

 Get

 Return _lastName

 End Get

 Set

 _lastName = value

 End Set

 End Property

 Private _age As Integer

 <DataMember> _

 Public Property Age() As Integer

 Get

 Return _age

 End Get

 Set

 _age = value

 End Set

 End Property

 Private _city As String

 <DataMember> _

 Public Property City() As String

 Get

 Return _city

 End Get

 Set

 _city = value

 End Set

 End Property

 End Class

 C#
namespace StealthPaging.Web

{

 /// <summary>

 /// Summary description for DataWebService

 /// </summary>

 [WebService(Namespace = "http://tempuri.org/")]

 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

 [System.ComponentModel.ToolboxItem(false)]

 // To allow this Web Service to be called from script, using

ASP.NET AJAX, uncomment the following line.

 // [System.Web.Script.Services.ScriptService]

 public class DataWebService : System.Web.Services.WebService

 {

 137

 [WebMethod]

 public List<ServerPerson> GetData(int startRow, int endRow)

 {

 List<ServerPerson> personList = new List<ServerPerson>();

 for (int i = startRow; i < endRow; i++)

 {

 personList.Add(new ServerPerson()

 {

 FirstName = string.Format("First Name {0}", i),

 LastName = string.Format("Last Name {0}", i),

 Age = i,

 City = string.Format("City {0}", i)

 });

 }

 return personList;

 }

 }

 [DataContract]

 public class ServerPerson

 {

 private string _firstName;

 [DataMember]

 public string FirstName

 {

 get { return _firstName; }

 set { _firstName = value; }

 }

 private string _lastName;

 [DataMember]

 public string LastName

 {

 get { return _lastName; }

 set { _lastName = value; }

 }

 private int _age;

 [DataMember]

 public int Age

 {

 get { return _age; }

 set { _age = value; }

 }

 private string _city;

 [DataMember]

 public string City

 {

 get { return _city; }

 set { _city = value; }

 }

 }

}

This code will create a new list that will be used to populate the C1DataGrid control.

138

8. Save your application, right-click the StealthPaging.Web project, and select Build from the context menu.

Note that you'll now be done with the StealthPaging.Web project and will return to working with the

StealthPaging project.

 What You've Accomplished

In this step you've added a data source to your project and created a Web Service. In the next step you'll finish
connecting the Web Service to your project and you'll run your application.

Step 3 of 3: Connecting the Web Service and Adding Stealth Paging

In the previous step you created a Web Service and added a data source to your project. In this step you'll continue
by linking the Web Service to your application.

To set up your project, complete the following steps:

1. Return to the MainPage.xaml file.

2. In the Solution Explorer, right-click the project name and select Add Service Reference from the context
menu.

3. In the Add Service Reference dialog box click the Discover button. The DataWebService.asmx file will

appear in the list of Services.

4. In the Namespace text box, change the default value to "DataService" and click the OK button to save
your settings and close the dialog box.

5. Customize your grid by adding

LoadedRowPresenter="peopleDataGrid_LoadedRowPresenter" to the <c1:C1DataGrid>

tag so that it appears similar to the following:
<c1:C1DataGrid x:Name="peopleDataGrid" AutoGenerateColumns="True"

CanUserAddRows="False"

LoadedRowPresenter="peopleDataGrid_LoadedRowPresenter">

This markup adds an event handler – you'll add code for the event handler in the next steps.

6. In the Solution Explorer, expand the MainPage.xaml node and double-click the MainPage.xaml.cs or

MainPage.xaml.vb file to open it in the Code Editor.

7. Add the following import statements at the top of the file:

 Visual Basic
Imports System.Runtime.Serialization

Imports System.Collections.ObjectModel

Imports System.ServiceModel

Imports C1.Silverlight

Imports C1.Silverlight.DataGrid

Imports StealthPaging.DataService ' Change this if the name of your

project is different.

 C#
using System.Runtime.Serialization;

using System.Collections.ObjectModel;

using System.ServiceModel;

using C1.Silverlight;

using C1.Silverlight.DataGrid;

using StealthPaging.DataService; // Change this if the name of your

project is different.

8. Add the following variables to the MainPage class:

 Visual Basic
Dim _startRow As Integer = 0

 139

Dim _pageSize As Integer = 20

Dim _people As New ObservableCollection(Of ServerPerson)()

Dim _loading As Boolean

 C#
int _startRow = 0;

int _pageSize = 20;

ObservableCollection<ServerPerson> _people = new

ObservableCollection<ServerPerson>();

bool _loading;

9. Add code to the MainPage constructor so it appears like the following:

 Visual Basic
Public Sub New()

 InitializeComponent()

 AddHandler peopleDataGrid.LoadedRowPresenter, AddressOf

peopleDataGrid_LoadedRowPresenter

 peopleDataGrid.ItemsSource = _people

 GetData(_startRow, _pageSize)

End Sub

 C#
public MainPage()

{

 InitializeComponent();

 peopleDataGrid.LoadedRowPresenter += new

EventHandler<DataGridRowEventArgs>(peopleDataGrid_LoadedRowPresenter);

 peopleDataGrid.ItemsSource = _people;

 GetData(_startRow, _pageSize);

}

10. Add the LoadedRowPresenter event handler to your code under the MainPage constructor:

 Visual Basic
Private Sub peopleDataGrid_LoadedRowPresenter(ByVal sender As

System.Object, ByVal e As C1.Silverlight.DataGrid.DataGridRowEventArgs)

 If _loading OrElse _people.Count < _pageSize Then

 Return

 End If

 If _people.Count - 5 < e.Row.Index Then

 GetData(_startRow, _startRow + _pageSize)

 End If

End Sub

 C#
private void peopleDataGrid_LoadedRowPresenter(object sender,

C1.Silverlight.DataGrid.DataGridRowEventArgs e)

{

 if (_loading || _people.Count < _pageSize)

 {

 return;

 }

 if (_people.Count - 5 < e.Row.Index)

 {

 GetData(_startRow, _startRow + _pageSize);

 }

}

11. Add the following code to retrieve data from the server:

140

 Visual Basic
#Region "retrieve data from the server"

Private Sub GetData(startRow As Integer, endRow As Integer)

 UpdateState(True, startRow, endRow)

 ' Call web service

 Dim proxy = New DataWebServiceSoapClient(New BasicHttpBinding(), New

EndpointAddress(Extensions.GetAbsoluteUri("DataWebService.asmx")))

 AddHandler proxy.GetDataCompleted, AddressOf proxy_GetDataCompleted

 proxy.GetDataAsync(startRow, endRow)

End Sub

Private Sub proxy_GetDataCompleted(sender As Object, e As

GetDataCompletedEventArgs)

 If e.[Error] IsNot Nothing Then

 MessageBox.Show(e.[Error].Message, "Error Getting Data",

MessageBoxButton.OK)

 Return

 End If

 ' Data retrieved OK, add to observable collection

 _startRow += _pageSize

 For Each person As ServerPerson In e.Result

 _people.Add(person)

 Next

 UpdateState(False, 0, 0)

End Sub

' Sets loading status

' You could use a VisualState here too

Private Sub UpdateState(loading As Boolean, startRow As Integer, endRow

As Integer)

 If loading Then

 txtStatus.Text = String.Format("Retrieving rows {0} to

{1}...", startRow, endRow)

 Cursor = Cursors.Wait

 _loading = True

 Else

 _loading = False

 txtStatus.Text = "Ready"

 Cursor = Cursors.Arrow

 End If

End Sub

#End Region

 C#
#region retrieve data from the server

private void GetData(int startRow, int endRow)

{

 UpdateState(true, startRow, endRow);

 // Call Web service

 var proxy = new DataWebServiceSoapClient(new BasicHttpBinding(),

new EndpointAddress(Extensions.GetAbsoluteUri("DataWebService.asmx")));

 proxy.GetDataCompleted += new

EventHandler<GetDataCompletedEventArgs>(proxy_GetDataCompleted);

 proxy.GetDataAsync(startRow, endRow);

}

void proxy_GetDataCompleted(object sender, GetDataCompletedEventArgs e)

{

 if (null != e.Error)

 {

 141

 MessageBox.Show(e.Error.Message, "Error Getting Data",

MessageBoxButton.OK);

 return;

 }

 // Data retrieved OK, add to observable collection

 _startRow += _pageSize;

 foreach (ServerPerson person in e.Result)

 {

 _people.Add(person);

 }

 UpdateState(false, 0, 0);

}

// Sets loading status

// You could use a VisualState here too

private void UpdateState(bool loading, int startRow, int endRow)

{

 if (loading)

 {

 txtStatus.Text = string.Format("Retrieving rows {0} to {1}...",

startRow, endRow);

 Cursor = Cursors.Wait;

 _loading = true;

 }

 else

 {

 _loading = false;

 txtStatus.Text = "Ready";

 Cursor = Cursors.Arrow;

 }

}

#endregion

12. Run your application and observe that the grid appears bound to a data source:

13. Run your application and observe that as you scroll through the grid more rows appear in the grid:

142

Also note that the text below the grid indicates the rows being added as you scroll.

 What You've Accomplished

Congratulations, you've completed this tutorial! In this tutorial you created a new Silverlight project, added a data

source, and created a Web Service to bind the C1DataGrid control. You implemented stealth paging, so that when
the grid is scrolled at run time, the grid pages through the grid instead, improving performance.

DataGrid for Silverlight Task-Based

Help
The following task-based help topics assume that you are familiar with Visual Studio and Expression Blend and

know how to use the C1DataGrid control in general. If you are unfamiliar with the ComponentOne DataGrid for

Silverlight product, please see the DataGrid for Silverlight Quick Start (page 46) first.

Each topic in this section provides a solution for specific tasks using the ComponentOne DataGrid for Silverlight

product. Most task-based help topics also assume that you have created a new WPF project and added a
C1DataGrid control to the project – for information about creating the control, see Creating a DataGrid (page
144).

Creating a DataGrid
You can easily create a C1DataGrid control at design time in Expression Blend, in XAML, and in code. Note that
if you create a C1DataGrid control as in the following steps, it will appear empty. You will need to bind the grid or
populate it with data.

At Design Time in Blend

To create a C1DataGrid control in Blend, complete the following steps:

1. Navigate to the Projects window and right-click the References folder in the project files list. In the

context menu choose Add Reference, locate and select the C1.Silverlight.DataGrid.dll assembly, and

click Open.

 143

The dialog box will close and the references will be added to your project and the controls will be available
in the Asset Library.

2. In the Toolbox click on the Assets button (the double chevron icon) to open the Assets dialog box.

3. In the Asset Library dialog box, choose the Controls item in the left pane, and then click on the

C1DataGrid icon in the right pane:

The C1DataGrid icon will appear in the Toolbox under the Assets button.

4. Click once on the design area of the UserControl to select it. Unlike in Visual Studio, in Blend you can

add WPF controls directly to the design surface as in the next step.

5. Double-click the C1DataGrid icon in the Toolbox to add the control to the panel. The C1DataGrid
control will now exist in your application.

6. If you choose, can customize the control by selecting it and setting properties in the Properties window.

For example, set the C1DataGrid control's Name property to "c1datagrid1" the Height property to "180",

and the Width property to "250".

In XAML

To create a C1DataGrid control using XAML markup, complete the following steps:

1. In the Visual Studio Solution Explorer, right-click the References folder in the project files list. In the

context menu choose Add Reference, select the C1.WPF.DataGrid.dll assembly, and click OK.

2. Add a XAML namespace to your project by adding

xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml to the initial

<UserControl> tag. It will appear similar to the following:
<UserControl

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml

x:Class="C1DataGrid.MainPage" Width="640" Height="480">

3. Add a <c1:C1DataGrid> tag to your project within the <Grid> tag to create a C1DataGrid control.

The markup will appear similar to the following:
<Grid x:Name="LayoutRoot" Background="White">

 <c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250" />

</Grid>

This markup will create an empty C1DataGrid control named "c1datagrid1" and set the control's size.

In Code

To create a C1DataGrid control in code, complete the following steps:

1. In the Visual Studio Solution Explorer, right-click the References folder in the project files list. In the

context menu choose Add Reference, select the C1.Silverlight.dll and C1.Silverlight.DataGrid.dll

assemblies, and click OK.

2. Right-click within the MainPage.xaml window and select View Code to switch to Code view

3. Add the following import statements to the top of the page:

 Visual Basic
Imports C1.Silverlight.DataGrid

 C#
using C1.Silverlight.DataGrid;

4. Add code to the page's constructor to create the C1DataGrid control. It will look similar to the following:

 Visual Basic
Public Sub New()

144

 InitializeComponent()

 Dim c1datagrid1 As New C1DataGrid

 c1datagrid1.Height = 180

 c1datagrid1.Width = 250

 LayoutRoot.Children.Add(c1datagrid1)

End Sub

 C#
public MainPage()

{

 InitializeComponent();

 C1DataGrid c1datagrid1 = new C1DataGrid();

 c1datagrid1.Height = 180;

 c1datagrid1.Width = 250;

 LayoutRoot.Children.Add(c1datagrid1);

}

This code will create an empty C1DataGrid control named "c1datagrid1", set the control's size, and add
the control to the page.

What You've Accomplished

Run your application and observe that you've created a C1DataGrid control.

Note that when you create a C1DataGrid control as in the above steps, it will appear empty. You can add items to
the control that can be interacted with at run time.

Controlling Grid Interaction
The following task-based help topics detail how you can enhance your users' interaction with DataGrid for

Silverlight. For example, you can allow users to filter, sort, reorder, delete, and edit the grid through code and
XAML.

Enabling Grouping in the Grid

You can enable grouping and the grouping area of the grid so that users can group columns in your grid at run
time to better organize information. For more information, see Grouping Columns (page 98). By default, user

cannot group columns in the grid but you can enable this function by setting the CanUserGroup property to True.

At Design Time

To enable grouping, complete the following steps:

1. Click the C1DataGrid control once to select it.

 145

2. Navigate to the Properties window and locate the CanUserGroup property.

3. Check the check box next to the CanUserGroup property.

In XAML

For example to enable grouping, add CanUserGroup="True" to the < c1:C1DataGrid> tag so that it appears

similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

CanUserGroup=True" />

In Code

For example, to enable grouping, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.CanUserGroup = True

 C#
this.c1DataGrid1.CanUserGroup = true;

What You've Accomplished

Run the application and notice that the grouping area appears at the top of the grid. Note that you can also

customize the visibility of the grouping area. For more information about the grouping area, see the Showing the
Grouping Area (page 147) topic.

Showing the Grouping Area

By default grouping in the grid is disabled and the grouping area is not visible. For more information, see

Grouping Columns (page 98). When the CanUserGroup property is set to True and grouping is enabled the
grouping area is made visible. But if you choose you can show or hide the grouping area whether or not grouping

is enabled. By default, the grouping area is not visible when grouping is not enabled but you can make the area

visible by setting the ShowGroupingPanel property to True.

At Design Time

To show the grouping area, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and locate the ShowGroupingPanel property.

3. Check the check box next to the ShowGroupingPanel property.

In XAML

For example to show the grouping area, add ShowGroupingPanel="True" to the < c1:C1DataGrid> tag so

that it appears similar to the following:
<c1:C1DataGrid Name="c1DataGrid1" Height="180" Width="250"

ShowGroupingPanel="True" />

In Code

For example, to show the grouping area, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.ShowGroupingPanel = True

 C#
this.c1DataGrid1.ShowGroupingPanel = true;

What You've Accomplished

146

Run the application and notice that the grouping area appears at the top of the grid. Note that even if the grouping

area is visible, grouping will not be enabled if the CanUserGroup property is False. For more information, see the
Enabling Grouping in the Grid (page 146) topic.

Disabling Column Reordering

By default end users can easily reorder columns in the grid at run time. For more information, see Reordering
Columns (page 95). If you choose, however, you can disable the column reordering feature by setting the

CanUserReorderColumns property to False.

At Design Time

To disable column reordering, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and locate the CanUserReorderColumns property.

3. Clear the check box next to the CanUserReorderColumns property.

In XAML

For example to disable column reordering, add CanUserReorderColumns="False" to the <

c1:C1DataGrid> tag so that it appears similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

CanUserReorderColumns="False" />

In Code

For example, to disable column reordering, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.CanUserReorderColumns = False

 C#
this.c1DataGrid1.CanUserReorderColumns = false;

What You've Accomplished

Run the application and observe that you can no longer reorder columns at run time by preforming a drag-and-
drop operation. For more information about column reordering, see the Reordering Columns (page 95) topic.

Disabling Column and Row Resizing

By default end users can resize columns and rows in the grid at run time. For more information, see Resizing
Columns and Rows (page 94). If you choose, however, you can disable the column and row resizing feature by

setting the CanUserResizeColumns and CanUserResizeRows properties to False.

At Design Time

To disable column and row resizing, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and locate the CanUserResizeColumns property.

3. Clear the check box next to the CanUserResizeColumns property.

4. In the Properties window, locate the CanUserResizeRows property.

5. Clear the check box next to the CanUserResizeRows property.

In XAML

For example to disable column and row resizing, add CanUserResizeColumns="False"

CanUserResizeRows="False" to the < c1:C1DataGrid> tag so that it appears similar to the following:

 147

<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

CanUserResizeColumns="False" CanUserResizeRows="False"/>

In Code

For example, to disable column and row resizing, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.CanUserResizeColumns = False

Me.C1DataGrid1.CanUserResizeRows = False

 C#
this.c1DataGrid1.CanUserResizeColumns = false;

this.c1DataGrid1.CanUserResizeRows = false;

What You've Accomplished

Run the application and observe that you can no longer resize columns or rows at run time by preforming a drag-
and-drop operation. For more information about column reordering, see the Resizing Columns and Rows (page

94) topic.

Disabling Column Filtering

By default end users can filter columns in the grid at run time. For more information, see Filtering Columns (page
95). If you choose, however, you can disable the column filtering feature by setting the CanUserFilter property to

False.

At Design Time

To disable column filtering, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and locate the CanUserFilter property.

3. Clear the check box next to the CanUserFilter property.

In XAML

For example to disable column filtering, add CanUserFilter="False" to the < c1:C1DataGrid> tag so that

it appears similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

CanUserFilter="False" />

In Code

For example, to disable column filtering, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.CanUserFilter = False

 C#
this.c1DataGrid1.CanUserFilter = false;

What You've Accomplished

Run the application and observe that you can no longer filter columns at run time; the drop-down arrow to display
the filter box is no longer visible at run time. For more information about column filtering, see the Filtering
Columns (page 95) topic.

Disabling Column Sorting

By default end users can sort columns in the grid at run time. For more information, see Sorting Columns (page
97). If you choose, however, you can disable the column sorting feature by setting the CanUserSort property to

False.

148

At Design Time

To disable column sorting, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and locate the CanUserSort property.

3. Clear the check box next to the CanUserSort property.

In XAML

For example to disable column sorting, add CanUserSort="False" to the < c1:C1DataGrid> tag so that it

appears similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

CanUserSort="False" />

In Code

For example, to disable column sorting, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.CanUserSort = False

 C#
this.c1DataGrid1.CanUserSort = false;

What You've Accomplished

Run the application and observe that you can no longer sort columns at run time. Clicking on a column's header at
run time will not sort the grid and the sort indicator is not visible in the column header. For more information
about column sorting, see the Sorting Columns (page 97) topic.

Enabling Column Freezing

You may want to freeze columns in the grid at run time so that they are always visible even when the grid is
scrolled horizontally. For more information, see Freezing Columns (page 100). This feature is not enabled by
default, but if you choose you can enable the column freezing feature by setting the CanUserFreezeColumns

property to Left.

At Design Time

To enable column freezing, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and locate the CanUserFreezeColumns property.

3. Click the drop-down arrow next to the CanUserFreezeColumns property and select Left.

In XAML

For example to enable column freezing, add CanUserFreezeColumns="Left" to the <c1:C1DataGrid> tag

so that it appears similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

CanUserFreezeColumns="Left" />

In Code

For example, to enable column freezing, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.CanUserFreezeColumns = DataGridColumnFreezing.Left

 C#
this.c1DataGrid1.CanUserFreezeColumns = DataGridColumnFreezing.Left;

 149

What You've Accomplished

Run the application and observe that the freeze bar is visible at run time. The freeze bar can be moved to select
which columns to freeze; columns to the left of the bar will be frozen so that they are always visible even when the
grid is scrolled horizontally. For more information about column freezing, see the Freezing Columns (page 100)
topic.

Freezing Grid Rows

You may want to freeze the top or bottom rows in the grid at so that they are always visible even when the grid is
scrolled vertically at run time. This feature is not enabled by default, but if you choose you can enable the row
freezing feature by setting the FrozenTopRowsCount and FrozenBottomRowsCount properties.

At Design Time

To freeze the top and bottom two rows, complete the following steps:

1. Click the C1DataGrid control once to select it and navigate to the Properties window.

2. In the Properties window, locate the FrozenTopRowsCount property, click in the text box next to the

property, and enter "2" to set the number of top tows that will be frozen.

3. Locate the FrozenBottomRowsCount property, click in the text box next to the property, and enter "2" to
set the number of bottom rows that will be frozen.

In XAML

For example to freeze the top and bottom two rows, add FrozenTopRowsCount="2"

FrozenBottomRowsCount="2" to the <c1:C1DataGrid> tag so that it appears similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

FrozenTopRowsCount="2" FrozenBottomRowsCount="2" />

In Code

For example, to freeze the top and bottom two rows, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.FrozenTopRowsCount = True

Me.C1DataGrid1.FrozenBottomRowsCount = True

 C#
this.c1DataGrid1.FrozenTopRowsCount = true;

this.c1DataGrid1.FrozenBottomRowsCount = true;

What You've Accomplished

Run the application and observe that the two top and bottom rows are frozen. Scroll the grid vertically and notice
that the top two an bottom two rows do not scroll and are locked in place. By default the Add New row appears as

the last row in the grid and so will be one of the frozen rows.

Disabling Cell Editing

By default end users edit content in the grid at run time. For more information, see Editing Cells (page 101). If you

choose, however, you can disable the cell editing feature by setting the CanUserEditRows property to False.

At Design Time

To disable cell editing, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and locate the CanUserEditRows property.

3. Clear the check box next to the CanUserEditRows property.

In XAML

150

For example to disable cell editing, add CanUserEditRows="False" to the < c1:C1DataGrid> tag so that it

appears similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

CanUserEditRows="False" />

In Code

For example, to disable cell editing, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.CanUserEditRows = False

 C#
this.c1DataGrid1.CanUserEditRows = false;

What You've Accomplished

Run the application and double-click a cell; observe that the cell does not move into edit mode and you can no
longer edit grid content at run time. For more information about cell editing, see the Editing Cells (page 101) topic.

Disabling Adding Rows

By default end users add new rows and content to the grid at run time. A new row bar appears at the bottom of the
grid, users can enter text in the bar to add new content to the grid. For more information, see Adding Rows to the
Grid (page 102). If you choose, however, you can disable the new row bar feature by setting the CanUserAddRows

property to False.

At Design Time

To disable adding rows, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and locate the CanUserAddRows property.

3. Clear the check box next to the CanUserAddRows property.

In XAML

For example to disable adding rows, add CanUserEditRows="False" to the < c1:C1DataGrid> tag so that

it appears similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

CanUserAddRows="False" />

In Code

For example, to disable adding rows, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.CanUserAddRows = False

 C#
this.c1DataGrid1.CanUserAddRows = false;

What You've Accomplished

Run the application and scroll to the end of the grid, if needed. Observe that the new row bar no longer appears in
the grid and that users can no longer add new rows and content to the grid. For more information about cell
editing, see the Adding Rows to the Grid (page 102) topic.

Disabling Row Details Toggling

When the grid includes a child grid or you've created a master-detail grid, by default the row details can be toggled
so that they are visible or collapsed. If you choose, however, you can disable the toggling the details row feature by

 151

setting the CanUserToggleDetails property to False. Note that you will need to have a grid with row details to
view the change in this example.

At Design Time

To disable toggling row details, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and locate the CanUserToggleDetails property.

3. Clear the check box next to the CanUserToggleDetails property.

In XAML

For example to disable toggling row details, add CanUserToggleDetails="False" to the <

c1:C1DataGrid> tag so that it appears similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

CanUserToggleDetails="False" />

In Code

For example, to disable toggling row details, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.CanUserToggleDetails = False

 C#
this.c1DataGrid1.CanUserToggleDetails = false;

What You've Accomplished

Run the application and observe that you can no longer toggle the row details in the grid at run time. The arrow
icon in the row header that indicates that row details can be toggled is no longer visible so toggling rows is not an
option.

Customizing Grid Appearance
The following task-based help topics detail how you can customize DataGrid for Silverlight by changing the grid's

appearance. DataGrid for Silverlight includes several appearance options that incorporate ComponentOne's
unique ClearStyle technology. For example, you can change the background color of the grid or the alternating
row background. Note for more information about ClearStyle technology, see the C1DataGrid ClearStyle (page
87) topic. The follow topics also detail changing the layout of the grid, including how to set the location of the
header and add new row bar.

Changing the Grid's Background and Foreground Color

ComponentOne DataGrid for Silverlight includes ComponentOne's unique ClearStyle technology that enables
you to change the entire appearance of the grid simply and flawlessly. The following steps will detail how to set the

C1DataGrid.Background property to completely change the appearance of the grid. For more details about
ComponentOne's ClearStyle technology, see the C1DataGrid ClearStyle (page 87) topic.

At Design Time

To change the grid's foreground and background color so that it appears green, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and click the drop-down arrow next to the Background property.

3. Click the drop-down arrow in the box the hex code appears in, and choose Green.

4. Navigate to the Properties window and click the drop-down arrow next to the Foreground property.

5. Click the drop-down arrow in the box the hex code appears in, and choose White.

152

In XAML

For example to change the grid's foreground and background color so that it appears green, add

Background="Green" Foreground="White" to the <c1:C1DataGrid> tag so that it appears similar to

the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

Background="Green" Foreground="White" />

In Code

For example, to change the grid's foreground and background color so that it appears green, add the following
code to your project:

 Visual Basic
Me.C1DataGrid1.Background = New

System.Windows.Media.SolidColorBrush(Colors.Green)

Me.C1DataGrid1.ForeGround = New

System.Windows.Media.SolidColorBrush(Colors.White)

 C#
this.c1DataGrid1.Background = new System.Windows.Media.

SolidColorBrush(Colors.Green);

this.c1DataGrid1.Foreground = new System.Windows.Media.

SolidColorBrush(Colors.White);

What You've Accomplished

Run the application and observe that the grid now appears green with white text in the grid header.

Note that with the C1DataGrid control's ClearStyle technology, the color of the grid, the grid's scrollbars, and the
alternating row background of the grid all changed to reflect the green background. Highlight an item in the grid
and notice the mouse hover style did not change; you can customize these styles as well if you choose. See
Changing the Grid's Mouse Hover Style (page 156) for more details.

Removing the Grid's Alternating Row Colors

ComponentOne DataGrid for Silverlight appears with alternating row colors by default. Alternating row colors

are when alternate lines appear in a different color than the base color of the grid. This is helpful so that rows are
easier to follow across the grid, but if you choose you can make the appearance of the grid uniform by removing
the alternating row colors.

At Design Time

 153

To remove alternating row colors and set it so all rows appear white, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and click the drop-down arrow next to the RowBackground property.

3. Click the drop-down arrow in the box the hex code appears in, and choose White.

4. Navigate to the Properties window and click the drop-down arrow next to the

AlternatingRowBackground property.

5. Click the drop-down arrow in the box the hex code appears in, and choose White.

In XAML

To remove alternating row colors and set it so all rows appear white, add RowBackground="White"

AlternatingRowBackground="White" to the <c1:C1DataGrid> tag so that it appears similar to the

following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

RowBackground="White" AlternatingRowBackground="White" />

In Code

To remove alternating row colors and set it so all rows appear white, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.RowBackground = New

System.Windows.Media.SolidColorBrush(Colors.White)

Me.C1DataGrid1.AlternatingRowBackground = New

System.Windows.Media.SolidColorBrush(Colors.White)

 C#
this.c1DataGrid1.RowBackground = new System.Windows.Media.

SolidColorBrush(Colors.White);

this.c1DataGrid1.AlternatingRowBackground = new System.Windows.Media.

SolidColorBrush(Colors.White);

What You've Accomplished

Run the application and observe that all rows in the grid now appear white.

Changing the Grid's Mouse Hover Style

By default, columns and rows that are moused over appear in a different color to indicate to users what area of the
grid they are interacting with. If you choose you can customize the appearance of cells that are moused over. For
example, you may want to highlight these cells even more or remove this effect.

154

At Design Time

To set the mouse over effect to yellow, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and click the drop-down arrow next to the MouseOverBrush property.

3. Click the drop-down arrow in the box the hex code appears in, and choose Yellow.

In XAML

To set the mouse over effect to yellow, add MouseOverBrush="Yellow" to the <c1:C1DataGrid> tag so

that it appears similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

MouseOverBrush="Yellow" />

In Code

To set the mouse over effect to yellow, add the following code to your project:

 Visual Basic
Me.c1datagrid1.MouseOverBrush = New

System.Windows.Media.SolidColorBrush(Colors.Yellow)

 C#
this.c1datagrid1.MouseOverBrush = new

System.Windows.Media.SolidColorBrush(Colors.Yellow);

What You've Accomplished

Run the application and observe that all highlighted rows and columns in the grid now appear yellow.

Changing the Grid's Font Style

You may want to update the font style that appears in DataGrid for Silverlight when the control is run. For
example, you may want to change the style of the grid, an element of which is the font style, to match your
application's appearance.

At Design Time

To change the font style, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and click the drop-down arrow next to the FontFamily property and

choose Times New Roman.

 155

3. Navigate to the Properties window and click the drop-down arrow next to the FontSize property and

choose 10.

In XAML

To change the font style, add FontFamily="Times New Roman" FontSize="10" to the

<c1:C1DataGrid> tag so that it appears similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

FontFamily="Times New Roman" FontSize="10" />

In Code

To remove alternating row colors and set it so all rows appear white, add the following code to your project:

 Visual Basic
Me.c1datagrid1.FontFamily = New FontFamily("Times New Roman")

Me.c1datagrid1.FontSize = 10

 C#
this.c1datagrid1.FontFamily = new FontFamily("Times New Roman");

this.c1datagrid1.FontSize = 10;

What You've Accomplished

Run the application and observe that all rows in the grid appear in the Times New Roman font.

	ComponentOne DataGrid for Silverlight Overview
	SilverlightSilverlightSilverlightSilverlightSilverlightSilverlightSilverlightSilverlightSilverlightSilverlightSilverlightInstalling DataGrid for Silverlight
	DataGrid for Silverlight Setup Files
	System Requirements
	Installing Demonstration Versions
	Uninstalling Studio for Silverlight

	End-User License Agreement
	Licensing FAQs
	What is Licensing?
	How does Licensing Work?
	Common Scenarios
	Creating components at design time
	Creating components at run time
	Inheriting from licensed components
	Using licensed components in console applications
	Using licensed components in Visual C++ applications
	Using licensed components with automated testing products

	Troubleshooting
	I have a licensed version of a ComponentOne product but I still get the splash screen when I run my project.
	I have a licensed version of a ComponentOne product on my Web server but the components still behave as unlicensed.
	I downloaded a new build of a component that I have purchased, and now I'm getting the splash screen when I build my projects.

	Studio for Silverlight Licensing

	Technical Support
	Redistributable Files
	About this Documentation
	XAML and XAML Namespaces
	Introduction to Silverlight
	Silverlight Resources
	Creating a New Silverlight Project
	Using Templates
	Data Templates
	Create the "Templates" Solution
	Populate the Controls
	Defining and Using Data Templates

	Control Templates

	Preparing Your Enterprise Environment

	Theming
	Available Themes
	BureauBlack
	ExpressionDark
	ExpressionLight
	RainierOrange
	ShinyBlue
	WhistlerBlue

	Custom Themes
	Included XAML Files
	C1.Silverlight.DataGrid
	C1.Silverlight.DataGrid.Ria
	C1.Silverlight.Theming.BureauBlack
	C1.Silverlight.Theming.ExpressionDark
	C1.Silverlight.Theming.ExpressionLight
	C1.Silverlight.Theming.RainierOrange
	C1.Silverlight.Theming.ShinyBlue
	C1.Silverlight.Theming.WhistlerBlue

	Implicit and Explicit Styles
	Implicit Styles
	WPF and Silverlight Styling
	Using the ImplicitStyleManager

	Applying Themes to Controls
	Applying Themes to an Application
	ComponentOne ClearStyle Technology
	How ClearStyle Works

	Key Features
	DataGrid for Silverlight Quick Start
	Step 1 of 4: Creating a Silverlight Application
	Step 2 of 4: Binding the Grid to a Data Source
	Step 3 of 4: Customizing the Grid's Appearance and Behavior
	Step 4 of 4: Running the Grid Application

	Working with DataGrid for Silverlight
	Class Hierarchy
	Data Binding
	WCF RIA Services Data Binding

	Defining Columns
	Generating Columns
	Column Types
	Explicitly Defining Columns
	Customizing Automatically Generated Columns

	Creating Custom Columns
	Customizing Column Cell Content
	Adding Properties to a Custom Column

	Creating Custom Rows
	Customizing Row Cell Content
	Adding a Custom Row to the Data Grid

	Adding Row Details
	Filtering the Grid
	Basic Column Filtering
	Filter Row Filtering
	Full Text Grid Filtering
	Advanced Filtering
	Column Filter List
	Tab Filter List

	Summarizing the Grid
	Localizing the Application
	Adding Resource Files
	Adding Supported Cultures
	Setting the Current Culture

	Enabling or Disabling End User Interaction
	Setting Selection Mode
	Locking the Grid
	Deferred and Real Time Scrolling
	Paging Grid Data

	DataGrid for Silverlight's Appearance
	C1DataGrid Themes
	Editing Styles
	Table Formatting Options
	Setting Row and Column Header Visibility
	Setting Grid Line Visibility
	Setting New Row Visibility
	Setting Vertical and Horizontal Scrollbar Visibility
	Setting Row Details Visibility

	C1DataGrid Brushes
	C1DataGrid ClearStyle
	C1DataGrid Template Parts
	RowDetailsTemplate

	Run-time Interaction
	Keyboard and Mouse Navigation
	Keyboard Navigation
	Mouse Navigation
	Multiple Row Selection
	Custom Keyboard Navigation

	Resizing Columns and Rows
	Reordering Columns
	Filtering Columns
	Sorting Columns
	Grouping Columns
	Freezing Columns
	Editing Cells
	Adding Rows to the Grid

	DataGrid for Silverlight Tutorials
	Binding the Grid to a Web Service
	Step 1 of 3: Creating the User Interface
	Step 2 of 3: Adding a Database and Web Service
	Step 3 of 3: Connecting the Web Service

	Binding the Grid to an RSS Feed
	Creating a Master/Detail View
	Step 1 of 3: Setting up the Master/Detail Grid
	Step 2 of 3: Adding a Data Source to the Project
	Step 3 of 3: Setting up Row Details

	Localizing the Grid
	Step 1 of 3: Setting up the Localized Grid
	Step 2 of 3: Adding a Resource File
	Step 3 of 3: Setting the Culture

	Binding the Grid to a WCF RIA Services Data Source
	Step 1 of 3: Creating the Application and Adding the Data Source
	Step 2 of 3: Adding the C1DataGrid control
	Step 3 of 3: Running the Application

	Implementing Stealth Paging
	Step 1 of 3: Creating the User Interface
	Step 2 of 3: Adding a Web Service
	Step 3 of 3: Connecting the Web Service and Adding Stealth Paging

	DataGrid for Silverlight Task-Based Help
	Creating a DataGrid
	Controlling Grid Interaction
	Enabling Grouping in the Grid
	Showing the Grouping Area
	Disabling Column Reordering
	Disabling Column and Row Resizing
	Disabling Column Filtering
	Disabling Column Sorting
	Enabling Column Freezing
	Freezing Grid Rows
	Disabling Cell Editing
	Disabling Adding Rows
	Disabling Row Details Toggling

	Customizing Grid Appearance
	Changing the Grid's Background and Foreground Color
	Removing the Grid's Alternating Row Colors
	Changing the Grid's Mouse Hover Style
	Changing the Grid's Font Style

