MCA (Revised)

Term-End Examination December, 2010

MCS-012: COMPUTER ORGANISATION & ASSEMBLY LANGUAGE PROGRAMMING

Time: 3 hours Maximum Marks: 100

(Weightage 75%)

Note: Question no. 1 is compulsory and carries 40 marks.

Attempt any three questions from the rest.

- (a) Add the following numbers using signed 5
 2's complement representation for 8 bit numbers. Indicate overflow/underflow if any
 - (i) +75 and -58
 - (ii) -75 and -52
 - (b) Design and draw a 3 × 8 decoder using NOT 7 gates and AND gates and explain its working.

	(c)	Explain the following 8086 microprocessor instructions with the help of an example each.	į
		(i) DAS (ii) XOR	,
		(iii) SHL (iv) ROR	e .
		(v) RCL	
	(d)	Discuss the operation of Programmed I/O	8
		and Interrupt driven I/O technique using flow chart. Compare them briefly.	
	(e)	Write a program in 8086 assembly language that adds two five byte numbers, use arrays.	5
	(f)	Design and draw a Binary Adder-Subtractor logic circuit.	5
	(g)	Explain Register relative and Index addressing scheme.	5
2,	(a)	Write an assembly language program for 8086 microprocessor to sort a given list of 5 numbers in ascending order and explain its logic.	10
	(b)	List all the features of RISC architecture.	5
	(c)	Explain LCDs.	5
3.	(a)	Simplify the following function in SOP and POS forms by means of K-map. Also draw the logic diagram.	10
		$F(A,B,C,D) = \sum (0.2,5,7,8,10,13,15)$	

	(b)	interrupt conditions.	5
	(c)	Discuss the difference between SDRAM and RDRAM.	5
4.	(a)	Construct a 5 to 32 line decoder with four 3 to 8 line decoders with enable and one 2 to 4 line decoder.	10
	(b)	What are program visible and program invisible registers. Explain flag register in 8086.	5
	(c)	Write a program in assembly language for 8086 microprocessor that compares a pair of characters entered through keyboard.	5
5.	(a)	Represent a binary number 1101011 in floating point representation using 32 bit word length (24 bit mantissa and 8 bit biased exponent).	6
	(b)	Explain	8
		(i) Associative Mapping.	
	•	(ii) Set Associative Mapping.	
	(c)	Explain the concept of FAT and Inode.	6