BACHELOR OF SCIENCE (APPLIED SCIENCE-ENERGY) (BSCAEY)

Term-End Examination December, 2024

December, 2024 BEY-001 : THERMAL SCIENCE							
							Time :
Note:	(i) An	swer ar	ıy seven q	uestions.			
	(ii) All	questio	ons carry e	qual mark	es.		
	(iii) Us	e of scie	entific calc	ulator is p	ermitte	ed.	
	(iv) Ass	sume sı	iitable dat	a, missing	if any.		
	scribe ecific he		odynamic letail.	equilibr	ium'	and	
2. (a)		_	between e property				
(b)		and nodyna	explain	Zeroth	Law	of 5	

- 3. A piston cylinder arrangement initially contains air at 150 kPa and 27°C. At this state, the piston is resting on a pair of stops in the cylinder and the enclosed volume is 400 litre. The mass of the piston is such that a 350 kPa pressure is required to move it. The air is now heated until its volume has doubled. Determine: 10
 - (a) The final temperature, and
 - (b) The work done by the air.
- 4. Derive the steady state flow energy equation (SFEE) and enlist the various features of steady state.
- 5. Draw a neat T-s diagram of regeneration in a Rankine cycle and explain in detail.10
- 6. Describe a pressure compounded turbine with a neat sketch.

- 7. Classify the cooling towers according to the draft type. Also, describe the draft created by mechanical means.
- 8. Discuss the *three* modes of heat transfer in detail.
- 9. What are the various parameters on which the classification of refrigerants is based upon? 10