No. of Printed Pages: 16 **BPHCT-133** 

# BACHELOR OF SCIENCE (GENERAL) (BSCG)

## **Term-End Examination**

## December, 2024

#### **BPHCT-133: ELECTRICITY AND MAGNETISM**

Time: 2 Hours Maximum Marks: 50

Note: Attempt all questions. Internal choices are given. Marks for each question are indicated against it. Symbols have their usual meanings. You may use a calculator.

## 1. Answer any *five* parts:

 $5\times3=15$ 

(a) Determine the unit vector normal to the curve  $x^2 + 5y^2 = 1$  at the point (1, -2).

(b) Determine the work done by a force:

$$\overrightarrow{F} = (x - 3y)\hat{i} + (x - y)\hat{j}$$

in moving a particle along a curve in the xy-plane given by x = 2t,  $y = 3t^2$  from t = 0 to t = 1.

- (c) Two positive point charges  $Q_1$  and  $Q_2$  are 2.0 m apart and their combined charge is 30  $\mu$ C. If one charge repels the other with a force of 0.090 N, what are the magnitudes of the two charges ?
- (d) The electric field due to an infinite line charge has magnitude  $7\times10^3\,\mathrm{NC^{-1}}$  at a distance of 2.0 m. Calculate the linear charge density.
- (e) A dielectric block is polarised such that:

$$\vec{P} = 1.5 \times 10^{-7} (x\hat{i} + \hat{j} + \hat{k}) \text{ Cm}^{-2}$$

Calculate the bound volume charge density.

- (f) A horizontal wire is carrying current from east to west. What is the direction of the force on the current carrying wire if we assume that at this location the magnetic field of the Earth points due north? If the wire carries a current of 30 A, calculate the force per unit length on it due to the Earth's magnetic field, which is about  $10^{-4}$  T.
- (g) A wire loop on the plane of the paper having radius 10 cm and resistance 3  $\Omega$  is kept in a uniform magnetic field  $\stackrel{\rightarrow}{B}$  at right angle to its cross-sectional area. The magnetic field points into it and increasing at the rate of 0.1 Ts<sup>-1</sup>. Determine the magnitude and direction of the induced current in the loop.

(h) Obtain the maximum value of the displacement current in a parallel plate capacitor made up of plates of area 1.0 m<sup>2</sup>. It is given that the electric field between the plates is  $E=E_0$  sin  $\omega t$  with  $E_0=5\,\mathrm{V}$  and frequency 15 MHz.

$$(\text{Take } \in_0 = 8.85 \times 10^{-12} \, \text{Fm}^{-1})$$

2. Answer any five parts:

 $5 \times 5 = 25$ 

(a) Evaluate  $\oint_{C} \vec{A} \cdot d\vec{l}$ , where  $\vec{A} = x^{2}\hat{i} + x\hat{j} + z^{2}\hat{k}$  and C is the ellipse in the *xy*-plane defined by:

$$\frac{x^2}{16} + \frac{y^2}{64} = 1, z = 0.$$

- (b) State divergence theorem. Using it calculate the divergence of the vector field  $\overrightarrow{A} = 2x\hat{i} + 3y\hat{j} + z\hat{k}, \quad \text{over} \quad \text{a} \quad \text{sphere}$   $x^2 + y^2 + z^2 = a^2.$
- (c) Two parallel plates, which have cross-sectional area of 90 cm<sup>2</sup>, carry equal and

opposite charge of  $2\times 10^{-7}\,\mathrm{C}$ . The space between the plates is filled with a dielectric material and the electric field within the dielectric is  $4\times 10^5\,\mathrm{Vm}^{-1}$ . What is the dielectric constant of the dielectric if the electric field across the plates without dielectric is given by  $E_0 = \frac{\sigma}{\epsilon_0}$ , where  $\sigma$  is the surface charge density of the plates.

- (d) Three charged particles A, B and C each having a charge of 1.00  $\mu$ C, are placed at rest on a straight line. The distance between A and B is 0.01 m. What is the net electrostatic force exerted on a particle C if it is placed to the left of the particle B along the line AB at the midpoint of AB?
- (e) The electric potential at any point is given by  $V = x(2y^2 2x^2)$ . Determine the electric field  $\stackrel{\rightarrow}{E}$  at point (1, 1).

- (f) An air-core solenoid wound with 30 turns per centimetre carries a current of 0.27 A. Calculate the value of magnetic field  $\stackrel{\rightarrow}{B}$  and magnetic intensity  $\stackrel{\rightarrow}{H}$  at the centre of the solenoid. If an iron-core of permeability  $6 \times 10^{-3} Hm^{-1}$  is inserted in the solenoid, what will be the value of  $\stackrel{\rightarrow}{H}$  and  $\stackrel{\rightarrow}{B}$ ? Take  $\mu = 4\pi \times 10^{-7} Hm^{-1}$ .
- (g) A solenoid of length 1 m and diameter 15 cm has 9000 turns of wire. A current of 3.0 A flowing in it is reduced steadily to zero in 1.0 ms. What is the magnitude of the back e.m.f. of the solenoid while the current is being switched off?

Take 
$$\mu_0 = 1.26 \times 10^{-6} Hm^{-1}$$
.

(h) Consider an electromagnetic wave in vaccum whose electric field is given by:

$$\overrightarrow{\mathbf{E}} = \left(30 \text{Vm}^{-1}\right) \hat{x} \cos\left(10^8 t + kz\right).$$

Determine the direction of propagation, the wave number, the frequency and the magnetic field of the wave.

3. Answer any *one* part:

 $1 \times 10 = 10$ 

- (a) State Gauss' law for electric field associated with symmetric charge distribution. Consider a spherical charge distribution of radius R having uniform volume charge density. Using Gauss' law, obtain expression for electric field due to it at a distance r from the centre at (i)  $r \ge R$ , and (ii) r < R.
- (b) (i) Starting from the integral form of Ampere's law:

$$\int \overrightarrow{B} \cdot \overrightarrow{dl} = \mu_0 \mathbf{I}$$

enclosed, obtain its differential form and hence show that  $\stackrel{\rightarrow}{B}$  is conservative field only when current density is zero.

(ii) Under what conditions, do the following time-varying electric and magnetic field:5

$$\overrightarrow{\mathbf{E}} = \hat{j}\mathbf{E}_0 \sin(z - vt);$$

$$\overrightarrow{\mathbf{B}} = i\mathbf{B}_0 \sin(z - vt)$$

with  $\boldsymbol{E}_0$  and  $\boldsymbol{B}_0$  as constant, satisfy the equation :

$$\vec{\nabla} \times \vec{\mathbf{E}} = -\frac{\partial \vec{\mathbf{B}}}{\partial t}$$
?

## BPHCT-133

विज्ञान स्नातक (सामान्य)

(बी.एस.-सी.जी.)

सत्रांत परीक्षा

दिसम्बर. 2024

बी.पी.एच.सी.टी.-133 : विद्युत और चुंबकत्व

समय : 2 घण्टे

अधिकतम अंक : 50

नोट: सभी प्रश्नों के उत्तर दीजिए। आंतरिक विकल्प दिए गए हैं। प्रत्येक प्रश्न के अंक उसके सामने दिए गए हैं। प्रतीकों के अपने सामान्य अर्थ हैं। आप केल्कलेटर का उपयोग कर सकते हैं।

1. किन्हीं **पाँच** भागों के उत्तर दीजिए :  $5 \times 3 = 15$ 

(क)  $x^2 + 5y^2 = 1$  द्वारा परिभाषित वक्र के लिए बिन्दु (1, -2) पर लंब एकक सदिश निर्धारित कीजिए।

- (ख) xy-समतल में बल  $\overrightarrow{F} = (x-3y) \hat{i} + (x-y) \hat{j}$  द्वारा वक्र  $x=2t;\ y=3t^2$  के अनुदिश किसी कण को t=0 से t=1 तक ले जाने में किए गए कार्य का परिकलन कीजिए।
- (ग) दो बिन्दु आवेश  $Q_1$  और  $Q_2$  एक-दूसरे से  $2.0~\mathrm{m}$  की दूरी पर रखे हैं। उनके आवेशों का योग  $30~\mathrm{\mu C}$  है। यदि एक आवेश दूसरे आवेश को परिमाण  $0.090~\mathrm{N}$  के बल से प्रतिकर्षित करता है, तो दोनों आवेशों के परिमाण क्या हैं ?
- (घ) अनंत रेखा आवेश के कारण 2.0 m की दूरी पर विद्युत क्षेत्र का परिमाण 7 × 10<sup>3</sup> NC<sup>-1</sup> है। रैखिक आवेश घनत्व की गणना कीजिए।
- (ङ) एक डाइलेक्ट्रिक खंड का ध्रुवण इस तरह होता  $\vec{\mathfrak{F}}$  कि  $\overrightarrow{P}=1.5\times 10^{-7}(x\hat{i}+\hat{j}+\hat{k})\mathrm{Cm}^{-2}$  है। इस खंड के लिए परिबद्ध आयतन आवेश घनत्व परिकलित कीजिए।

#### A-201/BPHCT-133

- (च) एक क्षैतिज तार में धारा पूर्व से पश्चिम की ओर प्रवाहित हो रही है। इस तार पर बल की दिशा क्या होगी, यदि यह मान लिया जाए कि इस स्थान पर पृथ्वी का चुंबकीय क्षेत्र उत्तर की ओर है ? यदि तार में 30 A धारा प्रवाहित होती हो, तो पृथ्वी के चुंबकीय क्षेत्र के कारण जो कि लगभग  $10^{-4}$ T है, तार की प्रति इकाई लंबाई पर आरोपित बल परिकलित कीजिए।
- (छ) पृष्ठ के समतल पर रखे त्रिज्या 10 cm वाला तार का एक लूप जिसका प्रतिरोध 3 Ω है, एकसमान चुंबकीय क्षेत्र В में इस प्रकार रखा है कि चुंबकीय क्षेत्र लूप के समतल पर लंबवत् है। चुंबकीय क्षेत्र की दिशा पृष्ठ के भीतर की ओर है और उसका परिमाण 0.1 Ts⁻¹की दर से बढ़ रहा है। लूप में प्रेरित धारा की दिशा और परिमाण परिकलित कीजिए।

- (ज) एक समांतर प्लेट संधारित्र में, जिसमें प्लेटों का क्षेत्रफल  $1.0~{\rm m}^2~$  है, विस्थापन धारा का अधिकतम मान ज्ञात कीजिए। दिया है कि प्लेटों के बीच का विद्युत क्षेत्र  $E=E_0\sin\omega t$  है, जहां  $E_0=5~{\rm V}$  और आवृत्ति  $15~{\rm MHz}$  है।  $(\epsilon_0=8.85\times 10^{-12}~{\rm Fm}^{-1}~{\rm Hi}$ न लें)
- 2. किन्हीं **पाँच** भागों के उत्तर दीजिए :  $5 \times 5 = 25$ 
  - (क) समाकल  $\oint_{\mathbf{C}} \vec{\mathbf{A}} \cdot \vec{dl}$  का मान परिकलित कीजिए,  $\vec{\mathbf{M}} = \mathbf{X}^2 \hat{i} + x \hat{j} + z^2 \hat{k}$  तथा  $\mathbf{C}$ , xy-समतल में दीर्घवृत्त है जिसे निम्नवत् परिभाषित करते हैं :

$$\frac{x^2}{16} + \frac{y^2}{64} = 1, z = 0.$$

(ख) डाइवर्जेन्स प्रमेय का कथन लिखिए। इसका उपयोग कर गोले  $x^2+y^2+z^2=a^2$  पर सिंदश क्षेत्र  $\overrightarrow{A}=2x\hat{i}+3y\hat{j}+z\hat{k}$ , का अभिवाह परिकलित कीजिए।

#### A-201/BPHCT-133

- (ग) दो समांतर प्लेटों पर, जिनके क्षेत्रफल  $90~\mathrm{cm}^2$  हैं, परिमाण  $2\times10^{-7}\mathrm{C}$  के समान और विपरीत आवेश हैं। प्लेटों के बीच के स्थान में एक डाई-इलेक्ट्रिक पदार्थ रखा जाता है और डाई-इलेक्ट्रिक के भीतर विद्युत-क्षेत्र  $4\times10^5~\mathrm{Vm}^{-1}$  है। डाई-इलेक्ट्रिक का डाई-इलेक्ट्रिक नियतांक क्या है ? दिया है कि प्लेटों के बीच डाई-इलेक्ट्रिक पदार्थ न होने पर विद्युत क्षेत्र  $E_0 = \frac{\sigma}{\epsilon_0}$  है, जहाँ  $\sigma$  प्लेटों पर पृष्ठीय आवेश घनत्व है।
- (घ) तीन आवेशित कणों A, B और C को, जिनमें से प्रत्येक पर 1.00 μC आवेश है, एक सीधी रेखा में विरामावस्था में रखा जाता है। A और B के बीच की दूरी 0.01 m है। कण C पर लग रहा शुद्ध स्थिरवैद्युत बल क्या होगा, यदि इसे रेखा AB के अनुदिश कण B के बायीं ओर AB के मध्य बिन्दु पर रखा जाए ?

- (ङ) किसी बिन्दु पर विद्युत विभव संबंध  $V=x(2y^2-2x^2)$  से प्राप्त होता है। बिन्दु  $(1,\,1)$  पर विद्युत क्षेत्र  $\stackrel{
  ightharpoonup}{E}$  परिकलित कीजिए।
- (च) एक वायु-क्रोड परिनालिका में प्रति सेन्टीमीटर 30 फेरे हैं और इसमें 0.27~A धारा प्रवाहित हो रही है। परिनालिका के केन्द्र में चुंबकीय क्षेत्र  $\overrightarrow{B}$  और चुंबकीय तीव्रता  $\overrightarrow{H}$  का मान परिकलित कीजिए। यदि एक लोहे की क्रोड को, जिसकी चुंबकशीलता  $6\times10^{-3}\,\mathrm{Hm}^{-1}$  है, परिनालिका में प्रविष्ट किया जाये, तो इस स्थिति में  $\overrightarrow{H}$  और  $\overrightarrow{B}$  का मान परिकलित कीजिए।

 $\mu_0 = 4\pi \times 10^{-7} \, \mathrm{Hm}^{-1}$  मान लें।

(छ) 1 m लंबे और 15 cm व्यास वाले सोलेनॉइड में तार के 9000 फेरे हैं। इसमें प्रवाहित हो रही

#### A-201/BPHCT-133

 $3.0~\mathrm{A}$  धारा  $1.0~\mathrm{ms}$  में नियत दर से शून्य हो जाती है। जब धारा को शून्य किया जाता है, तो प्रेरक के विरोधी विद्युत वाहक बल का परिमाण क्या होगा ?  $\mu_0 = 1.26 \times 10^{-6} \mathrm{Hm}^{-1}$  लें।

(ज) निर्वात् में एक विद्युत चुंबकीय तरंग का विद्युत क्षेत्र दिया है:

$$\vec{E} = (30 \text{Vm}^{-1}) \hat{x} \cos(10^8 t + kz).$$

तरंग के लिए तरंग संचरण की दिशा, तरंग संख्या, आवृत्ति और चुंबकीय क्षेत्र ज्ञात कीजिए।

- 3. किसी **एक** भाग का उत्तर दीजिए :  $1 \times 10 = 10$ 
  - (क) समित आवेश वितरण के लिए विद्युत क्षेत्र के लिए गाउस का नियम बताइए। त्रिज्या R वाले एक पक्समान आयतन आवेश घनत्व वाले एक गोलीय आवेश वितरण के कारण उसके केन्द्र से दूरी r पर विद्युत क्षेत्र का व्यंजक प्राप्त कीजिए, जब (i) r ≥ R, और (ii) r < R हैं।</li>

(ख) (i) ऐम्पियर के नियम के समाकल रूप :

$$\int \stackrel{\rightarrow}{\mathrm{B}} \cdot \stackrel{\rightarrow}{dl} = \mu_0 \mathrm{I}$$

परिबद्ध, से आरंभ कर इसका अवकल रूप
प्राप्त कीजिए और समझाइए कि चुंबकीय क्षेत्र

В तभी एक संरक्षी क्षेत्र है जब धारा घनत्व
का मान शून्य है।

(ii) िकन प्रतिबंधों के अधीन, निम्नलिखित परिवर्ती विद्युत् और चुंबकीय क्षेत्र: 5

$$\vec{\mathbf{E}} = \hat{j}\mathbf{E}_0\sin(z - vt);$$

$$\vec{\mathbf{B}} = i\mathbf{B}_0 \sin(z - vt)$$

समीकरण  $\overset{\rightarrow}{\nabla}\times\overset{\rightarrow}{\rm E}=-\frac{\partial\overset{\rightarrow}{\rm B}}{\partial t}$  को संतुष्ट करते हैं, जहाँ  ${\rm E}_0$  और  ${\rm B}_0$  अचर हैं ?

 $\times \times \times \times \times \times \times$