Maximum Marks: 75

P. T. O.

Time: 3 Hours

A-208/MCH-002

POST GRADUATE DIPLOMA IN ANALYTICAL CHEMISTRY (PGDAC)

Term-End Examination December, 2024

MCH-002: SEPARATION METHODS

No	te : ((i) Attempt any five questions. All questions carry equal marks.	 ons
	((ii) Marks allotted in parts are indicated RHS.	on
1. Attempt any <i>five</i> questions from the following			g :
	(a)	Enlist <i>three</i> steps of extraction.	3
	(b)	Explain the basis of classification chromatographic methods.	of 3
	(c)	Define R_f value with an illustration. Wr down ideal range of R_f values.	rite 3

(d)	Write the characteristics of silica and
	alumina used as commercial HPLC column
	packing materials. 3
(e)	Write briefly about agar and agrose gels
	with a schematic representation of its
	partial structure. 3
(f)	Explain the basic principle of
	electrophoresis. 3
(a)	(i) Discuss the main requisites of a semi-
	permeable membrane used for various
	applications. 3
	(ii) Explain the term 'Electro-migration'
	and name the techniques under its
	head. 2
(b)	Explain separation factor. Describe various
	ways of conducting multiple extractions.
	2+3
(c)	What are 'diluents' and 'modifiers' ?
	Explain their role in extraction process

with two examples for each. $2\frac{1}{2} + 2\frac{1}{2}$

2.

- 3. (a) Explain extraction by ion pair formation with suitable example. $2\frac{1}{2}+2\frac{1}{2}$
 - (b) Name and draw structures of derivatives of phosphoric acid used in extraction. Which one of these are most extensively used ?4+1
 - (c) Explain retention factor (k_X) . Derive an expression for separation factor and comment on shapes of peaks. 2+2+1
- 4. (a) Write Deemter equation and explain all its terms. Draw the nature of plot between linear flow rate (*u*) and plate height in gas and liquid chromatography. 3+2
 - (b) Write *three* basic methods of chromatographic developments. Explain any *one* of them.
 - (c) Explain how thin layer chromatography (TLC) is different from paper chromatography (PC) with respect to stationary phase, mobile phase, detection methods and apparatus used in two cases.

- 5. (a) Are the resolution factor and separation factor same? What will be the situation at R=1 and the separation factor being unity?
 - (b) Explain column efficiency solvent efficiency with the help of illustration. Write the expression for number of plates. 2+2+1
 - (c) Draw a block diagram of a typical gas chromatograph indicating all the essential components.
 5
- 6. (a) Illustrate variation of retention time with % of liquid phase. 5
 - (b) Write briefly about ion chromatography and draw a schematic diagram of ion chromatograph with separation column.

3+2

(c) List various approaches followed in interfacing HPLC with mass spectrometry.

5

7. (a) Explain any *five* resin properties briefly. 5

- (b) What are gels? Explain their typical structure. Write their important properties that make them useful for chromatography. 1+1+3
- (c) Explain cation and anion exchangers including amphoteric exchangers. Write names of any *two* commercial ion exchangers.
- 8. (a) Briefly discuss capillary electrophoresis with schematic illustration of its experimental setup. Mention any four detection methods.
 - (b) What are various membrane processes?

 Devise a method of membrane separation process for protein, sucrose and CaCl₂ from a solution mixture.
 - (c) Define Reverse Osmosis (RO). What are the parameters in terms of which RO is evaluated? Briefly explain the desirable properties of semi-permeable membrane used in RO process.