M. SC. (GEOINFORMATICS) (MSCGI)

Term-End Practical Examination December, 2024

MGYL-008(Set-I): DIGITAL IMAGE PROCESSING AND SPATIAL ANALYSIS LABORATORY

Time: 3 Hours Maximum Marks: 30

- Note: (i) All questions are compulsory. Marks are indicated against each question.
 - (ii) Evaluation would be done under three parameters (i.e., performance, results/outputs and viva-voce).
 - (iii) The data to be used in the examination are provided by the exam centre in the computer allotted to you.
 - (iv) The data to be used for the examination are in the folders named as A, B, C, which are mentioned in the question paper as (A), (B), (C),, respectively.

- (v) Keep all the soft copy results/outputs approximately in the computer in a folder with your enrollment number.

 Other answers are to be written in the answer sheet provided to you.
- (vi) Incomplete and illegible results/outputs will not be evaluated.
- 1. (a) Make a table in your answer sheet showing comparison of the important features of SAGA and GRASS Software.
 - (b) Mosaic the given data (B) and create a colour composite.
 - (c) From the output generated as a part of the answer to question 1(b), generate an unsupervised classified image having at least 5 landuse land cover (LULC) classes. Prepare a map showing standard false colour composite and the classified image.

5+2

(d) Write a 'R' pseudocode for thresholding the NIR band in the folder (B) for delineating land-water boundary.

(e)	Prepare	a	filled-in	form	for	collect	ing
	LULC fie	eld	data to be	e used	for s	supervis	sed
	classification and accuracy assessment.						4

- (f) Create an EVI image from the data (B). 1
- (g) Create a map of New Zealand from the data (E) using dissolve and clip operations.
- (h) Degrade the given data (A) to create an output DEM of 180 m spatial resolution. Create spatial profiles from the original and degraded DEMs. Write the comparison of the two DEMs in your answer sheet.

1+2+2

2. Viva-voce.

5