M. SC. (MATHEMATICS WITH APPLICATION IN COMPUTER SCIENCE) [M. SC. (MACS)]

Term-End Examination December, 2024

MMT-003: ALGEBRA

Time: 2 Hours Maximum Marks: 50

Note: Question No. 1 is compulsory. Answer any four questions from Question No. 2 to 6.

Calculators are not allowed. Show all the steps involved in every solution you do.

- Which of the following statements are true and which are false? Justify your answers with a short proof or counter-example, whichever is appropriate.
 - (i) If a group of order 32 acts on a set with 31 elements, then there must be at least one singleton orbit.

- (ii) In the ring of Gaussian integers $\mathbf{Z} + \mathbf{Z}i$ (subring of \mathbf{C}), || is an irreducible element.
- (iii) If p is a prime congruent to 2 (mod 3), then there exists an integer x such that $x^2 = -3 \pmod{p}$.
- (iv) (N, .) is a finitely generated semi-group.
- (v) If k is a field, then $k \times k$ is a UFD.
- 2. Let $K = \mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Show that K is a Galois extension of \mathbf{Q} and the Galois group $\mathbf{G}(K/\mathbf{Q})$ is isomorphic to $\mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$.
- 3. (a) Determine how many isomorphism classes of abelian groups of order 36 are there.

 Justify your answer. Also, write the groups from each of the isomorphism classes.
 - (b) Find the integer x, 1800 < x < 3600, such that $x \equiv 2 \pmod{9}$, $x \equiv 3 \pmod{25}$ and $x \equiv 4 \pmod{8}$.
 - (c) Check whether $\mathbf{Q}(i)$ is algebraically closed or not.
- 4. Show that if G is a non-abelian group of order 8, then o(Z(G)) = 2. Hence show that G is either isomorphic to D_8 or Q_8 .

5.	(a)	Find	the	number of		distinct		monic		
		irreducible		polynomials		in	$\mathbf{Z}_5[x]$		of	
		degree	e 3.						5	

- (b) Prove that SU_2 and $S^3 \subseteq \mathbb{R}^4$ are isomorphic.
- 6. (a) Check whether a group of order 12 is simple or not.
 - (b) Let A be a finite abelian group and B be a finitely generated free abelian group. Find Tor(A), Tor(B) and show that Tor(A × B) is isomorphic to A.
 - (c) Check whether or not a field is a Euclidean domain.