M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. SC. (MACS)] Term-End Examination

December, 2024

MMT-004: REAL ANALYSIS

Time: 2 Hours Maximum Marks: 50

Note: Question No. 1 is compulsory. Attempt any four questions out of question nos. 2 to 6.

Use of calculator is not allowed.

1. State whether the following statements are True *or* False. Give reasons for your answers:

 $5 \times 2 = 10$

(a) The product of two discrete metrics is a discrete metric.

- (b) The set of integers is neither dense nor nowhere dense in R with respect to the usual metric on R.
- (c) $\mathbb{R}^2/\{(0, 1)\}$ is compact but not connected.
- (d) For the function:

$$f(x, y, z) = x^2y + y^2z + z^2$$

$$f''(1, 1, -1/2)$$
 is $\begin{bmatrix} 2 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & 2 \end{bmatrix}$.

- (e) All continuous real valued functions defined on [0, 1] are measurable but not integrable.
- 2. (a) Find the interior, closure and boundary of the set:

B =
$$\{(x, y) \in \mathbb{R}^2 : x = 0\}$$

(b) Define uniform continuity of functions between metric spaces. Prove that a uniformly continuous image of a Cauchy sequence is a Cauchy sequence.

(c) For the function $F: \mathbb{R}^4 \to \mathbb{R}^3$ given by :

$$F(x, y, z, w) = (x^2y, xyz, x^2 + y^2 + zw^2)$$

Write down the component functions. Find the derivative of F at (0, 0, 0, 0).

- 3. (a) Prove that a compact subset of a metric space is closed and bounded. Is the converse true? Justify.
 - (b) Prove that the Lebesgue measure is countably additive.
 - (c) Check whether the function:

$$f(x, y) = (x^2 - y^2, 2xy)$$

is locally invertible on $E = \{(x, y) \mid x > 0\}$.

- 4. (a) Prove that a non-empty subset of R is connected if and only if it is an interval (R with the usual metric).
 - (b) Find and classify the stationary points of the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by: 3

$$f(x, y) = (y - x^2)(y - 2x^2)$$

MMT-004

(c) Suppose f is a non-negative measurable function and $E \in M$. Define $\int_E f \, dm$. For

 $A, B \in M \text{ with } A \cap B = \phi, \text{ prove that : } 3$

$$\int_{A \cup B} f \, dm = \int_{A} f \, dm + \int_{B} f \, dm$$

- 5. (a) Prove that a continuous function from a compact metric space to any other metric space is uniformly continuous.
 - (b) (i) State and prove the Monotonic convergence theorem. 4
 - (ii) Does the sequence:

$$f_n = \chi_{[n, n+1]}, n=1, 2....$$

satisfy all the conditions of the above theorem? Check.

6. (a) For a real function f∈ L,[-π,π], define the nth Fourier coefficient of f, the exponential and the trigonometric form of the Fourier series of f.

Find the Fourier series of the function: 4

$$f(t) = \begin{cases} 0, & -\pi \le t < 0 \\ 1, & 0 < t < \pi \end{cases}$$

- (b) State the Riemann-Lebesgue lemma. 2
- (c) Find the extreme values of the function: 4

$$\mathbf{Z} = 2x_1^2 + x_2^2 + 3x_3^2 + 10x_1 + 8x_2 + 6x_3 - 100$$

Subject to the constraint:

$$x_1 + x_2 + x_3 = 20,$$

$$x_1, x_2, x_3 \ge 0$$
.