M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)]

Term-End Examination December, 2024 MMT-006: FUNCTIONAL ANALYSIS

Time: 2 Hours Maximum Marks: 50

Weightage: 70%

Note: (i) Question No. 6 is compulsory.

- (ii) Attempt any **four** of the remaining questions.
- 1. (a) Is the map $A : \mathbb{R}^3 \to \mathbb{R}^2$, A(x, y, z) = (x + y, y + z) open? Justify.
 - (b) Show that the operator A on l^2 defined by $Ax(n) = \frac{i^n}{n}x(n)$ is compact and normal. 2+2
 - (c) Prove that c_0 is a closed subspace of c and $\dim \frac{c}{c_0} = 1$. 2+2

- 2. (a) Show that on a Hilbert space, Hahn-Banach extensions are unique. 2
 - (b) For $x \in l^1$, define $f(x) = \sum \frac{n}{n+1} x(n)$. Prove that f is a bounded linear functional with ||f|| = 1 and there is no $x \neq 0$ with $|f(x)| = ||x||_1$.
 - (c) Let M be a closed subspace of a normed space X. Show that d(x,M) = ||x|| if and only if there is a bounded linear functional $f \neq 0$ on X such that f = 0 on M and ||f(x)|| = ||f||||x||.
- 3. (a) Define $\langle \cdot, \cdot \rangle : \mathbb{C}^4 \times \mathbb{C}^4 \to \mathbb{C}$ as:

$$\langle x, y \rangle = x(1) \overline{y(1)} + x(2) \overline{y(2)} + x(3) \overline{y(3)}$$

$$-x(4)\overline{y(4)}$$

Show that $\langle \cdot, \cdot \rangle$ is linear in the 1st variable and conjugate symmetric but not an inner product.

(b) Define A on C [0, 1] by A f(t) = t f(t). Prove that A is a bounded operator, but is not compact.

4. (a) State bounded inverse theorem. Use the theorem to show the following:

Suppose H is a Hilbert space and A is a bounded linear operator such that $\langle Ax, x \rangle \ge 0$ for all $x \in H$. Assume that A defines a complete norm on H given by $||x||_A^2 = \langle Ax, x \rangle$.

Show that $\exists c \text{ such that } \langle Ax, x \rangle \geq c ||x||^2$.

1+2

(b) Let X be a Banach space and let $c_0(X)$ be the space of all sequences (x_n) in X such that $\lim ||x_n|| = 0$. Prove that $c_0(X)$ is a Banach space with norm $||(x_n)|| = \sup ||x_n||$.

3

- 5. (a) Let H be a Hilbert space $u \in H, u \neq 0$. Define $Ax = \langle x, u \rangle u, x \in H$ and $Bx = \langle x, u \rangle \frac{u}{||u||}$. Calculate A*, A² and B². 3

- (b) Let $X = C_{00}$, $u_n = (0,0,...,0,1,0,0,...,)$, where only the nth entry is 1 and let $k_n = \frac{1}{n}$ for n = 1,2,... Show that Riesz-Fischer theorem does not hold good.
- (c) Define $A: l^p \to l^p$ by $Ax = (0, x_1, x_2,....)$, $1 \le p < \infty$. Show that A is an isometry which has no eigen values. What is R(A) in terms of $\{e_n\}$?
- 6. State, with justification, whether the following statements are True *or* False: $5\times2=10$
 - (a) If a subspace M of a normed space X is $finite\ dimensional,\ then\ dim \frac{X'}{M^{\perp}} < \infty\,.$
 - (b) A Banach space cannot be the union of countably many proper closed subspaces.
 - (c) If A is a bounded operator on l^2 and $A^2 = 0$, then A = 0.
 - (d) There is no linear map $\mathbb{C}^3 \to \mathbb{C}^4$ that takes any orthonormal basis to an orthonormal set.
 - (e) There is a linear map $\mathbb{R}^m \to \mathbb{R}^n$ with a closed graph that is not continuous.

