M. SC. (MATHEMATICS WITH APPLICATION IN COMPUTER SCIENCE [M. SC. (MACS)]

Term-End Examination

December, 2024

MMTE-002 : DESIGN AND ANALYSIS OF ALGORITHMS

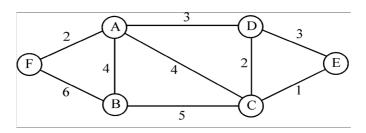
Time: 2 Hours Maximum Mark: 50

Note: Attempt any four questions from Question Nos. 1 to 5. Question No. 6 is compulsory. Use of calculator is not allowed.

1. (a) Construct the MAXHEAP tree on the following list of numbers: 5

25, 32, 7, 8, 53, 22, 13, 16

(b) Sort the following numbers using Merge sort algorithm:

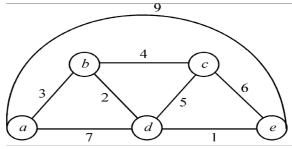

25, 11, 22, 15, 10, 13, 21, 33

(c) Define the big O-notation. Show that $n^2 + 3x$ is $O(n^2)$.

2. (a) Sort the following numbers using Radix Sort algorithm:

(b) Find the minimum spanning tree for the following graph using Prim's algorithm with A as the root vertex:

5


3. (a) Explain with steps, the algorithm for finding longest common subsequence of the following sequences:

5

$$X = \langle B, C, D, C, E, B, C \rangle$$

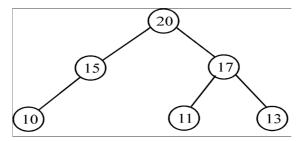
and
$$Y = \langle C, E, D, B, C, B \rangle$$

(b) Apply Dijkstra's algorithm to the following graph to find the single source shortest paths with *a* as the starting vertex: 5

- 4. (a) Find all the solutions to the equation $15x \equiv 10 \pmod{35}$ using extended Euclidean algorithm.
 - (b) Construct the binary search tree with the following keys, inserting them in the given order:

 5

10, 8, 19, 6, 9, 14, 42


Explain the procedure for removing the key 8.

- 5. (a) Describe the Divide and Conquer algorithm for finding the closest pair of points in a finite subset of the plane.
 - (b) Compute Discrete Fourier Transform (DFT) of the vector (1, 2, 0, 3).
 - (c) Rank the following functions by order of growth:

That is, find an ordering g_1 , g_2 and g_3 of the functions satisfying $g_1 = O(g_2)$, $g_2 = O(g_3) : n^2, e^n, n \log \log n$.

- 6. Which of the following statements are true and which are false? Justify your answers with a short proof or a counter-example whichever is appropriate:
 - (i) Merge sort algorithm is a stable sorting algorithm.

(ii) The following is an example of max-heap:

- (iii) The dynamic programming approach always gives a better solution to any problem in comparison to the Greedy approach.
- (iv) If a weighted graph has a unique spanning tree, the weights of the graph are distinct.
- (v) $\phi(n)$ is always even for any natural number n > 2, where ϕ is the Euler phi-function.