M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. SC. (MACS)]

Term-End Examination December, 2024

MMTE-004: COMPUTER GRAPHICS

Time: $1\frac{1}{2}$ Hours Maximum Marks: 25

Weightage: 50%

Note: (i) Question No. 1 is compulsory.

- (ii) Attempt any three questions out of question nos. 2 to 5.
- (iii) Use of calculator is not allowed.
- 1. State whether the following statements are true *or* false. Justify your answers : $5\times2=10$
 - (a) Colour CRT monitors with beam penetration method can produce picture only in two colours.
 - (b) Under the reflection about the line y = -x, the point (1, 2) transforms to (-2, -1).

- (c) Liang-Barsky algorithm is a bitwise line chipping algorithm.
- (d) The matrix:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

represents a parallel projection.

- (e) The midpoint line generation algorithm requires performing integer calculations only.
- 2. Transform the scene in the world coordinate system to the viewing coordinate system with viewpoint at (1, 0, 2), view plane normal vector (1, -1, 2) and the view-up vector (1, 0, 0).
- 3. (a) Odd-even rule and the winding number rule always produce the same interior region. True or False? Justify.
 - (b) Trace the DDA line drawing algorithm for the line segment (0, 1) to (5, 8).
- 4. (a) Show that two successive 2D rotations commute, i.e., R (θ) R (ϕ) = R (ϕ) R (θ). 2

- (b) Let W be the clip window with corners at (0, 0); (10, 0); (10, 5) and (0, 5). If Cohen-Sutherland line clipping algorithm is applied, which of the following lines will be trivially accepted, and which trivially rejected? Justify your answers:
 - (i) Line AB with A = (0, -1); B = (6, -2)
 - (ii) Line CD with C = (8, 7); D = (12, 4)
 - (iii) Line EF with E = (2, 1); F = (7, 2)
- 5. (a) What will be the new coordinates of the point P $(1, 2, \sqrt{3})$ if it is rotated about the y-axis by an angle of 60° and then scaled uniformly with a factor of $\frac{1}{2}$?
 - (b) Write any *two* differences between parallel and perspective projection.