M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. SC. (MACS)]

Term-End Examination December, 2024

MMTE-005: CODING THEORY

Time: 2 Hours Maximum Marks: 50

Note: (i) There are six questions in this paper.

- (ii) The **sixth** question is compulsory.
- (iii) Do any four questions from question nos. 1 to 5.
- (iv) Use of calculator is not allowed.
- 1. (a) Define the following, giving an example of each:
 - (i) Self-dual code
 - (ii) Hamming weight of a codeword
 - (iii) Generator matrix
 - (b) Compute the 2-cyclotomic cosets modulo 19.

6

- (a) (i) Construct the parity check matrix of the binary Hamming code H₈ of length 15.
 - (ii) Using the above parity check matrix decode the vector 001000001100100. 3
 - (b) Find the g.c.d. of $x^4 + x^3 + x^2 + x + 2$ and $x^4 + 2x^2 + x + 1 \in \mathbb{F}_3[x]$.
- 3. (a) Let C be the narrow-sense binary BCH code of designed distance $\delta = 5$ which has a designing set $T = \{1, 2, 3, 4, 6, 8, 9, 12\}$. Let α be a primitive 15th root of unity, where $\alpha^4 = \alpha + 1$ and let the generator polynomial of C be $g(x) = 1 + x^4 + x^6 + x^7 + x^8$. If $y(x) = x + x^4 + x^7 + x^8 + x^{11} + x^{12} + x^{13}$ is

received, find the transmitted code-word.

You can use the following table:

 α^{11} $\alpha^{3} \\$ α^{7} 0000 0 1000 1011 1110 α^8 $\alpha^4 \\$ α^{12} 0001 1 0011 0101 1111 α^9 α^{13} α^{5} 0010 α 0110 1010 1101 α^{14} $\alpha^2 \\$ $\alpha^6 \\$ α^{10} 0100 1100 0111 1001

(b) The systematic generator matrix for a [5, 2] binary, linear code is:

$$G = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Find the standard array for decoding.

- 4. (a) Find a generator polynomial and parity check polynomial of a [7, 4] binary cyclic code. Find the generator matrix and parity check for the code.
 - (b) Construct the generator matrix G(1,3) of the Reed-Muller code R(1,3).
 - (c) Prove that, if the minimum distance of a code C is d, the minimum distance of the extended code \widehat{C} is d or d+1.
- 5. (a) Let C be a cyclic code of length n over \mathbf{F}_q with defining set T. Suppose C has minimum weight d. Assume T contains $\delta-1$ consecutive elements for integer δ . Then $\delta \geq d$.

(b) Let C be the [5, 2]-binary code generated by:

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Find the weight distribution of C. Find the weight distribution of the dual code C^{\perp} using the MacWilliams identity.

- 6. Which of the following statements are true and which are false? Justify your answer with a short proof or a counter-example, whichever is appropriates:
 - (a) Every self-orthogonal code is self-dual.
 - (b) The code $C = \{00000, 11111\}$ can correct 3 errors.
 - (c) There is a 2-cyclotomic set of modulo 31 of size 7.
 - (d) The Reed-Muller code R(1,3) is a self-dual code.
 - (e) The code $C = \{0000.0100, 1000, 0010\}$ is a cyclic code.