M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. SC.(MACS)]

Term-End Examination December, 2024

MMTE-006: CRYPTOGRAPHY

Time: 2 Hours Maximum Marks: 50

Note: (i) There are six questions in this paper.

- (ii) The **sixth** question is **compulsory**.
- (iii) Do any four questions from Question Nos. 1 to 5.
- (iv) Use of calculator is not allowed.
- (v) Show all the relevant steps. Do the rough work at the bottom or at the side of the page only.
- (a) Explain the concept of data integrity in Cryptography. Name any tool that is useful in achieving data integrity.

- (b) Explain the Blum-Blum-Shub pseudorandom bit generator. Find the first four terms of the output for the primes 19, 23 and 3 as the initial integer.
- (c) Explain the Diffie-Hellman key exchange.4
- 2. (a) Decrypt the Vigenère cipher OQLTHEQTFBYZOL, where the keyword is "SMART". Is the Vigenère cipher a polyalphabetic or monoalphabetic substitution cipher? Justify your answer. 4
 - (b) Calculate the multiplicative inverse of $x^5 + x^3 + 1$ in $\mathbf{F}_2[x]/\langle x^8 + x^4 + x^3 + x + 1 \rangle$. 4
 - (c) Factorise 221 using the Fermat factorisation method.
- 3. (a) Generate the first ten terms of the LFSR sequence with characteristic polynomial $x^5 + x^3 + 1$, with starting values $(x_0, x_1, x_2, x_3, x_4) = (1,0,1,1,0)$.
 - (b) Compute 5²¹ (mod 41) using repeated squaring algorithm.
 - (c) Let n = 2911 and $\phi(n) = 2800$. Factorise 2911 into two primes.

- 4. (a) What is Merkle-Damgard strengthening?

 Illustrate this method with the string
 "SCRAMBLEDEGGS", assuming a block
 size 64 bits.
 - (b) Check that $x^2 + 1 \in \mathbf{F}_3[x]$ is irreducible. Is it primitive? Justify your answer.
- 5. (a) Alice uses the EIGamal digital signature scheme for signing her messages. She chooses the prime p=43, primitive root $\overline{5}$ and the secret value $a=\overline{3}$. She makes the values $(p,\alpha,\beta)=(43,5,39)$ public.
 - (i) Suppose Alice send the message
 M = 20 to Bob. She chooses the secret
 value k = 7. How will she generate the
 digital signature for this message?
 What values will she send to Bob? 4
 - (ii) How will Bob verify the digital signature?
 - (b) Explain the difference between Las Vegas algorithm and Monte-Carlo algorithm. 2

- 6. Which of the following statements are true and which are false? Justify your answer: 10
 - (a) We can speed up the encryption in OFB mode of a block cipher by precomputing the key stream.
 - (b) Non-repudiation is not required if the receiver can authenticate the origin of the message.
 - (c) The AKS test for primality is more reliable than the Miller-Rabin test.
 - (d) The pseudo-random sequence generated by a single LFSR is strongly secure.
 - (e) There is at least one finite field with fifteen elements.