M. SC. (PHYSICS) (MSCPH)

Term-End Examination December, 2024

MPH-001 : MATHEMATICAL METHODS IN PHYSICS

Time: 2 Hours Maximum Marks: 50

Note: Attempt any five questions. Marks are indicated against each question. Symbols have their usual meanings. You may use calculator.

1. Using the generating function for Hermite polynomials: 7+3

$$g(x, t) = e^{2xt - t^2} = \sum_{n=0}^{\infty} H_n(x) \frac{t^n}{n!}$$

obtain (i) the recurrence relation:

$$H_{n+2}(x) = 2x H_{n+1}(x) - 2(n+1)H_n(x)$$

(ii) establish the relation between $H_n(x)$ and $H_n(-x)$ as:

$$H_n(-x) = (-1)^n H_n(x)$$

2. (a) The one-dimensional differential equation for the function E_y is given by: 5

$$\frac{\partial^2 \mathbf{E}_y}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}_y}{\partial t^2} = 0$$

Solve this equation if $E_y = 0$ at x = 0 and x = L.

- (b) Write the Rodrigue's formula for Legendre polynomials. Using this formula, obtain the value of $P_3(x)$ and $P_4(x)$. 1+4
- 3. (a) What are symmetric and anti-symmetric matrices? Separate the real and imaginary parts of a Hermitian matrix H by writing it as the sum of a real matrix A and i (the imaginary unit) times another real matrix B:

$$H = A + iB$$

What is the nature of the matrices A and B?

(b) Obtain the eigen values for the real symmetric matrix: 2+3

$$\begin{bmatrix} \cos\theta & \sin\theta & 0\\ \sin\theta & -\cos\theta & 0\\ 0 & 0 & -1 \end{bmatrix}$$

Determine the eigen vector for any one eigen value.

- 4. (a) Show that g^{ij} is a contravariant second rank tensor.
 - (b) Obtain the Taylor's series expansion of $\cos^2 z$ about z = 0.
- 5. Using the method of Residues (Jordan's lemma), show that:

$$\int_{-\infty}^{\infty} \frac{\cos x \, dx}{x^2 + 4} = \frac{\pi e^{-2}}{2}$$

6. (a) Consider a triangle P in the z-plane with vertices at i, 1-i, 1+i. Obtain the triangle P₀ which mapped P under the transformation w = 3z + 4 - 2i. What is the relation between P and P₀? Also calculate the area magnification.

(b) Obtain the Fourier transform of the function: 5

$$f(t) = \begin{cases} 0, & t < 0 \\ e^{-at}, & t \ge 0, a > 0 \end{cases}$$

7. Obtain the inverse Laplace transform of: 10

$$F(s) = \frac{s^2 + 2s + 3}{(s+2)(s+1)^2}$$

- 8. (a) Define the symmetric group S₃ and give its geometrical illustration. 5
 - (b) Show that all $n \times n$ unitary matrices form a group. 5