POST GRADUATE DIPLOMA IN APPLIED STATISTICS (PGDAST)

Term-End Examination December, 2024

MST-001 : FOUNDATION IN MATHEMATICS AND STATISTICS

Time: 3 Hours Maximum Marks: 50

Note: Question No. 1 compulsory. Attempt any four questions from the remaining Question Nos. 2 to 7. Use of scientific calculator (non-programmable) is allowed. Use of Formulae and Statistics Table Booklet for PGDAST is allowed. Symbols have their usual meanings.

- 1. State whether the following statements are true or false. Give reasons in support of your answers: $5\times2=10$
 - (a) If:

$$A = \{2, 4, 6, 7, 8\}$$

and

$$B = \{4, 6, 8\}$$

are subsets of $U = \{1, 2, 3, 4, 6, 7, 8\}$, then the commutative law holds.

(b) The sequence:

$$e^{x/y}$$
, $e^{2x/y}$, $e^{3x/y}$, $e^{4x/y}$

form a geometric progression.

(c) If:

$$x = 1 + 3t^{2}$$
$$y = 6t^{2} + 18t + 1,$$
$$12t + 1$$

then $\frac{dy}{dx} = \frac{12t+1}{6t}$.

and

- (d) Two matrices are said to be equal if they are of the same order.
- (e) The more than and less than ogives of a frequency distribution cut at mean.
- 2. (a) Find the following sum : $4 \\ 0.6 + 0.61 + 0.62 + ...$ to 110 terms.
 - (b) Expand $(4-3x)^{2/3}$ using binomial theorem for rational exponent.
 - (c) Show that the set $B = \{3, 7, 11, 15, 19,\}$ is an enumerable set.
- 3. (a) Solve the following system of equations using Cramer's rule:

$$x + 2y = -5$$

$$2x - 3y = 4$$

(b) Evaluate the following determinant: 3

$$\begin{vmatrix} x+3 & x & x \\ x & x+3 & x \\ x & x & x+3 \end{vmatrix}$$

(c) Evaluate the following integral: 4

$$\int_{6}^{7} \frac{2x+7}{(x-3)(x+1)(x-4)} dx$$

4. (a) Find the derivative of the following function:

$$f(x) = \sqrt{\frac{x^3 + 1}{x + 1}}$$

- (b) Distinguish between quantitative and qualitative data giving suitable examples. 2
- (c) If:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix},$$

then show that $\frac{A-A'}{2}$ is a skew-symmetric matrix and $\frac{A+A'}{2}$ is a symmetric matrix.

(d) Evaluate: 2

$$\int \frac{x}{x+2} dx$$

5. (a) A function f(x) is defined as follows:

$$f(x) = \begin{cases} \frac{1}{3} - x & \text{if when } 0 < x < \frac{1}{3} \\ 0 & \text{if when } x < \frac{1}{3} \\ \frac{5}{3} - 5x; & \text{when } \frac{1}{3} < x < 1 \end{cases}$$

Prove that f(x) is continuous at $x = \frac{1}{3}$.

- (b) How many 4 letters words are possible using 6 letters a, b, c, d, e, f such that in each case:
 - (i) Two letters a and b are always included.
 - (ii) Two letters c and d are always excluded.
- (c) Write *two* differences between primary and secondary data.
- 6. (a) Draw a suitable bar diagram of the sales data given ahead:

Year	Sales of Scooties (in numbers)
2015	200
2016	460
2017	520
2018	680
2019	720
2020	2930

(b) Draw a histogram for the following frequency data:

Wages (in ₹ '000)	No. of Workers
0–5	40
5–10	80
10–15	90
15–20	100
20–25	130
25–30	150
30–35	120
35–40	90
40–45	80
45–50	50

- (c) Distinguish between four measurement scales giving a suitable example. 4
- 7. (a) Find: 5

$$A^{-1}$$
,

where:

$$A = \begin{bmatrix} 3 & 0 & 3 \\ 0 & -1 & -2 \\ 4 & -2 & 5 \end{bmatrix}$$

(b) A company is started by the four persons
A, B, C and D and they distribute the profit or loss among themselves in proportion of 3:4:1:2. In 2021 year, the company earned a profit of ₹ 15,450.
Represent the percentage shares of their profits in a pie chart.

