M. SC. (APPLIED STATISTICS) (MSCAST)

Term-End Examination December, 2024

MST-015: INTRODUCTION TO R SOFTWARE

Time: 2 Hours Maximum Marks: 25

Note: (i) Question No. 1 is compulsory.

- (ii) Attempt any **two** questions out of the remaining Question Nos. 2 to 4.
- (iii) Use of scientific calculator (non-programmable) is allowed.
- (iv) Symbols have their usual meanings.

1. Answer the following:

 $5\times1=5$

- (a) What is the use of assignment operator? Write any *two* assignment operators available in R.
- (b) Is there any difference between the usage of help() and help.search() functions for help?
- (c) Write the output of the following statement: sum(C (1:5, NA, NA, NA, 6:10))

- (d) Which of the following user defined function names are inappropriate and why?
 - (i) tan
 - (ii) length
- (e) Write an assignment statement equivalent to the following equation in R:

Area =
$$\pi r^2 + \pi r l$$

2. (a) Write a R command to obtain the frequency table and create a strip chart of the following data by controlling overplotting and using the **rep()** function:

3

5 5 5 5 5 5 4 4 4 4 3 3 3 2 2 1

(b) Write a R command that generates the following sequence of time:

(c) Write step-by-step execution of the following loop:

```
\begin{aligned} &\text{data} \leftarrow \text{head (USArrests)} \\ &\text{i} \leftarrow 1 \\ &\text{repeat } \{ \\ &\text{data [, i]} \leftarrow \text{data [, i]/mean (data [, i])} \\ &\text{if (i==3) break} \\ &\text{i} \leftarrow \text{i} + 1 \end{aligned}
```

}

- 3. (a) Write the name of the different types of **if** statements available in R. Also, write the general syntax of each one of them and explain how they are executed.
 - (b) Write R code to compute the coefficients of skewness and kurtosis β_1 and β_2 of the data x_1, x_2, x_3, x_4 and x_5 using user defined functions. Also, give the printing command for printing β_1 and β_2 using the **cat()** function.
 - (c) Write step-by-step execution of the following code:

```
y \leftarrow -5

p \leftarrow 1

if (y > = 0) {

while (y > 0) {

p \leftarrow p^*y; cat("p=", p, "\n")

y \leftarrow y - 1; cat("y=", y, "\n")}

} else {

while (y > 0) {

p \leftarrow p/y; cat("p=", p, "\n")

y \leftarrow y + 1; cat("y=", y, "\n")

}

cat ("p = ", p, "\n")
```

2

4. (a) Create two matrices A and B with the following elements:

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & -2 & 2 \\ 9 & 0 & 3 \end{pmatrix}$$

and

$$\mathbf{B} = \begin{pmatrix} 1 & -2 & -1 \\ -2 & 2 & -3 \\ -1 & -3 & 4 \end{pmatrix}$$

Combine the two matrices row-wise and assign it to another matrix named **C**. Then write R commands to do the following tasks:

- (i) Obtain the vectors of column sums and row sums of matrix **C**.
- (ii) Extract the even number rows of C.
- (iii) Drop the odd number columns of C.
- (iv) Extract the elements of matrix A fromC.
- (b) Find the error in the following code:

$$x \leftarrow \text{matrix } (1:4, 2, 2)$$

 $(x [0,] + x [1,]) / 2$

Also, rewrite the corrected code.

(c) Create a data frame named **Data** consisting of the following data:

X	У	Z	w
0.03	0.15	0.45	A
0.81	0.86	0.73	A
0.31	0.64	0.89	В
0.38	0.92	0.41	В
0.30	0.30	0.68	\mathbf{C}
0.82	0.73	0.30	\mathbf{C}

Write R commands to:

- (i) rename the columns as Col1, Col2, Col3 and Col4.
- (ii) compute the row means and column sums of the data frame.
- (iii) sort **Data** according to the **Col2** of it.
- (iv) group the data according to the w variable.