M. Sc. (APPLIED STATISTICS) (MSCAST)

Term-End Examination December, 2024

MST-017: APPLIED REGRESSION ANALYSIS

Time: 3 Hours Maximum Marks: 50

Note: (i) Question No. 1 is compulsory.

- (ii) Attempt any four questions from the remaining question nos. 2 to 6.
- (iii) Use of scientific calculator (non-programmable) is allowed.
- (iv) Symbols have their usual meanings.
- 1. State whether the following statements are true *or* false. Give reasons in support of your answers: $5\times2=10$
 - (a) The model $Y = (\beta_0 + \beta_1 X_1 + \beta_2 X_2) \epsilon$ is a linear model.
 - (b) For a regression model with 4 explanatory variables fitted on 20 observations, if the value of DFFITS for a observation is 1.5,

- then that observation is considered as an influential point.
- (c) We use Durbin-Watson test for ensuring the presence of heteroscedasticity of error terms in the regression model.
- (d) In case of Poisson regression model, we use the identity link function.
- (e) If any *one* of the explanatory variables is highly correlated with other explanatory variables, the issue of autocorrelation occurs.
- 2. To study the relationship between age (in years) and cholesterol level (in mg/dL) of two groups of patients, the following data were obtained:

Group 1									
Age	46	52	39	65	54	49	76	71	
Cholesterol	186	218	182	241	224	193	3 262	240	
Group 2									
Age	20	33	78	51	4	3	44	63	
Cholesterol	208	248	335	264	2	42	268	315	

Fit the multiple linear regression model. Also obtain the regression model for each group separately.

3. The following table provides data on the average price of a product (in ₹) and total monthly sales (in ₹ lakhs) of 12 departmental stores to check the effect of price of the product on the monthly sales:

Store	Total Sales	Price of Product		
		Troduct		
1	2.4	34.0		
2	2.3	34.7		
3	2.0	29.8		
4	2.9	38.2		
5	2.7	36.1		
6	3.2	42.8		
7	3.4	40.8		
8	2.8	37.8		
9	3.2	38.4		
10	3.7	41.3		
11	4.0	42.0		
12	3.4	40.1		

If the fitted regression model for the given data is Y = -2.4 + 0.14X, then construct the residual and normal probability plots. Also interpret both plots. 6+4

- 4. (a) Explain the concept of heteroscedasticity in regression analysis with example. 5
 - (b) Mention the underlying assumptions of the multiple linear regression model. 5
- 5. To study the effect of smoking on a disease, the following data were collected: 4+2+2+2

	Disease	No disease	
Smoker	452	215	
Non-Smoker	548	785	
Total	1000	1000	

- (i) Fit a logistic model.
- (ii) Determine the probability of having disease in both groups.
- (iii) Compute log-odds for smokers and nonsmokers.
- (iv) Obtain the odds ratio for disease.
- 6. Write short notes on the following topics: 5+5
 - (a) Polynomial Regression Model
 - (b) Polytomous Regression Model