M. SC. (APPLIED STATISTICS) (MSCAST)

Term-End Examination December, 2024

MST-018: MULTIVARIATE ANALYSIS

Time: 3 Hours Maximum Marks: 50

Note: (i) Question No. 1 is compulsory.

- (ii) Attempt any four questions from the remaining Question Nos. 2 to 6.
- (iii) Use of scientific calculator (nonprogrammable) is allowed.
- (iv) Symbols have their usual meanings.
- 1. State whether the following statements are True or False. Give reasons in support of your answers: $2\times5=10$
 - (a) Multivariate normal distribution is an analogue of univariate normal distribution.

- (b) The first and second principal components in principal component analysis depend on each other.
- (c) If:

$$A = \begin{pmatrix} 3 & -1 & 2 \\ -1 & 8 & -1 \\ 2 & -1 & 4 \end{pmatrix}$$

and $B = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 3 & 0 \\ 2 & 0 & 6 \end{pmatrix}$,

then the trace of matrix A is greater than trace of matrix B.

(d) If the variance-covariance matrix Σ of a random vector X is partitioned as:

$$\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix},$$

then $\Sigma_{21} = \Sigma_{12}$.

(e) Canonical correlation is the maximum correlation between the variates and linear combination of the variates.

2. (a) Let $X_{p\times 1} \sim N_p(\mu, \Sigma)$. Also let X_{n} , μ and Σ be partitioned as:

$$\mathbf{X}_{p\times 1} = \begin{pmatrix} \mathbf{X}_{\sim k\times 1}^{(1)} \\ \mathbf{X}_{\sim (p-k)\times 1}^{(2)} \end{pmatrix}, \ \mu_{\sim p\times 1} = \begin{pmatrix} \mathbf{\mu}_{\sim k\times 1}^{(1)} \\ \mathbf{X}_{\sim (p-k)\times 1}^{(2)} \end{pmatrix} \text{ and }$$

$$\Sigma_{p \times p} = \begin{pmatrix} \Sigma_{11 \ k \times k} & \Sigma_{12 \ k \times (p-k)} \\ \Sigma_{21 \ (p-k) \times k} & \Sigma_{22 \ (p-k) \times (p-k)} \end{pmatrix}.$$

Then prove that the sub-vectors $\underline{X}^{(1)}$ and $\underline{X}^{(2)}$ are independently normally distributed if and only if $\Sigma_{12}=0$, i.e., $\mathrm{Cov}\Big(\underline{X}_{k\times 1}\Big), \Big(\underline{X}_{(p-k)\times 1}^2\Big)=0$, where 0 is the null matrix.

(b) Let $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ has the following joint density function :

$$f(x_1, x_2) = \begin{cases} 2(x_1 + x_2 - 4x_1^3 x_2), & 0 < x_1 < 1, 0 < x_2 < 1 \\ 0, & \text{otherwise} \end{cases}$$
Then find the mean vector of X and the

diagonal elements of the variance-covariance matrix of X. 5

3. (a) Let X be a 3-dimensional vector with

dispersion matrix
$$\Sigma = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 4 & 0 \\ -1 & 0 & 2 \end{pmatrix}$$
. Then

determine the first principal component and the proportion of the total variability that it explains. 5

(b) If $X_{p\times 1} \sim N_p\left(\underbrace{\mu, \Sigma}\right)$, where Σ is a diagonal

matrix, then the components of

$$\begin{split} \mathbf{X}_{\sum_{p \times 1} = \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_p \end{pmatrix}} & \text{are independently normally} \\ & \text{distributed as } \mathbf{X}_i^{\text{Ind.}} \mathbf{N}_1 \big(\mathbf{\mu}_i, \mathbf{\sigma}_{ii} \big) & \text{for } i = 1, 2, \end{split}$$

4. (a) If $\Sigma = \begin{pmatrix} 3 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$ is the variance-

covariance matrix of a random vector X,

then obtain the corresponding correlation coefficient's matrix. 5

5

(b) If
$$X \sim N_p(\mu, \Sigma)$$
, then prove that:

$$\mathbf{Y}_{q \times 1} = \mathbf{C}_{q \times p} \mathbf{X}_{p \times 1} + \mathbf{V}_{p \times 1} \sim \mathbf{N}_{q} \left(\mathbf{C} \mathbf{\mu} + \mathbf{V}, \mathbf{C} \mathbf{\Sigma} \mathbf{C}' \right),$$

where C is any $q \times p$ matrix of rank $q \leq p$ of constant elements and $\bigvee_{p \times 1}$ is a

p component vector of constants.

- 5. (a) Define Wishart distribution. If $A_1 \sim \omega(n_1, p, \Sigma)$ and $A_2 \sim \omega(n_2, p, \Sigma)$, where A_2 is independent of A_1 , then prove that : 5 $A_1 + A_2 \sim \omega(n_1 + n_2, p, \Sigma)$.
 - (b) Define sample discriminant function. Write the stepwise classification procedure using sample discriminant function.
- 6. Obtain and draw the dendrogram for the following distance matrix using single linkage method:

 $\times \times \times \times \times \times \times$