BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination December, 2024

(Elective Course : Mathematics)
MTE-14 : MATHEMATICAL MODELLING

Time: 2 Hours Maximum Marks: 50

Weightage: 70%

Note: (i) Attempt any five questions.

- (ii) Use of calculato is not allowed.
- (iii) Symbols have their usual meanings.
- 1. (a) The process of plucking of a guitar-string results in the frequency of vibration being a function of the Young's modulus (same dimension as force per unit area), the length and density of the string. Use dimensional analysis to derive an expression for the frequency of vibration of string.

- (b) In a game of matching coins with two players A and B suppose A wins one unit of value when there are two heads, wins nothing when there are two tails and loses half unit of value when there is one head and one tail. Determine the payoff matrix, the best strategies for each player and the value of the game.
- 2. (a) Assume that the moon is at a distance of 3,00,000 kms from the earth and that it takes 28 days to orbit the earth once. Geostationary satellites are those which are at a rest relative to earth. Using these two statements, derive the altitude of the geostationary satellite from the centre of the earth.
 - (b) The population of a fish in a reservoir is affected by both fishing and restocking. The proportionate birth rate is constant at 0.45 per year and the proportionate death rate is constant at 0.65 per year. The reservoir is restocked at a constant rate of

3,000 fishes per year and fishermen are allowed to catch 2,500 fishes per year. Derive a model for the fish population and solve it. Describe the long-term behaviour of the fish population in the two cases when the initial population is 2000 or 8000.

3. (a) Show that the amplitude 'A' of a particle executing SHM passing through points P and Q with displacements m and n and velocities V₁ and V₂, respectively is given by the relation:

$$A^2(V_1^2 - V_2^2) = (n^2V_1^2 - m^2V_2^2)$$

- (b) The short-run cost function for an enterpreneur is $q^3 7q^2 + 16q + 90$. Determine the price at which the enterpreneur ceases production in an ideal market. Also, derive the supply function. 4
- 4. (a) The increase in vehicular traffic in big cities has led to a lot of air pollution and there is an increasing incidence of

like asthma, respiratory diseases bronchitis etc. In order to make mathematical model for the rate of of the cases of respiratory increase diseases, write the essentials and nonessentials that you will need to keep in mind (give four essentials and two nonessentials). 3

[4]

(b) Consider the following system of differential equations representing a prey and predator model:

$$\frac{dx}{dt} = x^2 - y$$

$$\frac{dy}{dt} = x + y$$

- (i) Identify all the real critical points of the system of equations given above.
- (ii) Obtain the types and stability of these critical points.
- 5. (a) State any *two* assumptions for formulation of a simple mathematical model for blood flow in arteries for which Poiseuille's law is applicable.

- (b) In a public telephone booth the arrivals are on an average 15 per hour. A call on an average takes 3 minutes. If there is just one phone, find:
 - (i) The expected number of callers in the booth at any time.
 - (ii) The proportion of time the booth is expected to be idle.
- (c) A drug is induced in a patient's blood stream at a constant rate r gms/sec. Simultaneously the drug is removed at a rate proportional to the amount x(t) of the drug present at any time t. Determine the differential equation governing the amount x(t). If the initial concentration of the drug in the blood stream is x_0 , find the concentration of the drug at any time t.
- 6. (a) Formulate the initial boundary value problem for the temperature T in a cylindrical rod with insulated sides and with flat ends at x = 0 and x = L. The end at x = 0 is kept at 60°C. The end at x = L is insulated. At time t = 0 the temperature distribution throughout the rod is

f(x), 0 < x < L. Assume no internal heat generation. Also, find the steady-state solution of the problem formulated.

- (b) The average number of new cases of a disease is proportional to:
 - (i) (number of susceptibles)²
 - (ii) number of infectives

Set up the model equation for the average number of new cases in an initial population of n individuals. Also, solve the resulting equation.

7. (a) Let the return on the securities of two companies X and Y be as given below:

Event (j)	Chance	Return	
	$(\mathbf{P}_{1j} = \mathbf{P}_{2j})$	R_{1j}	R_{2j}
1	0.3	15	12
2	0.25	12	8
3	0.2	9	6
4	0.25	10	9

Find the expected return of the portfolio P = (0.7, 0.3) and Q = (0.4, 0.6). What

inference can you draw by comparing the returns of the portfolios P and Q? 5

(b) A projectile is fired with a constant speed v at two different angles of projections α and β such that it gives the same range. Show that:

 $\csc \alpha = \sec \beta$

(c) Find the terminal velocity and time taken by a raindrop of radius 0.8 cm to reach the ground if it starts it descent in a cloud 35000 m high.

MTE-14

स्नातक उपाधि कार्यक्रम (बी. डी. पी.) सत्रांत परीक्षा

दिसम्बर, 2024

(ऐच्छिक पाठ्यक्रम : गणित) एम.टी.ई.-14 : गणितीय निदर्शन

समय : 2 घण्टे

अधिकतम अंक : 50

भारिता: 70%

- नोट : (i) किन्हीं **पाँच** प्रश्नों के उत्तर दीजिए।
 - (ii) कैल्कुलेटर का प्रयोग करने की अनुमित नहीं है।
 - (iii) प्रतीकों के अपने सामान्य अर्थ हैं।
- 1. (क) एक गिटार के तार को तोड़ने की प्रक्रिया के परिणामस्वरूप कंपन की आवृत्ति यंग (प्रति इकाई बल के समान आयाम) के गुणांक तथा तार की लम्बाई और घनत्व के एक फलन के रूप में प्राप्त होती है। तार के कंपन की आवृत्ति का

व्यंजक निगमित करने के लिए विमीय विश्लेषण का प्रयोग कीजिए। 5

- (ख) दो खिलाड़ियों A और B के साथ सिक्कों के मिलान के एक खेल में मान लीजिए कि दो हेड होने पर A मूल्य की एक इकाई जीतता है, दो टेल होने पर कुछ भी नहीं जीतता है और एक हेड और एक टेल होने पर मूल्य की आधी इकाई खो देता है। भुगतान आव्यूह, प्रत्येक खिलाड़ी के लिए सर्वोत्तम रणनीतियों और खेल के मूल्य का निर्धारण कीजिए।
- 2. (क) मान लीजिए कि चन्द्रमा पृथ्वी से 3,00,000 किमी. की दूरी पर है तथा यह पृथ्वी के परितः एक परिभ्रमण 28 दिन में करता है। तुल्यकाली उपग्रह वे उपग्रह हैं जो पृथ्वी के सापेक्ष विश्राम में रहते हैं। इन दो तथ्यों का उपयोग करते हुए, पृथ्वी के केन्द्र से तुल्यकाली उपग्रह की ऊँचाई निगमित कीजिए।

- (ख) एक जलाशय में मछलियों की संख्या (समष्टि) मछली पकडने और जलाशय में मछलियों के पुन:स्थापन से प्रभावित होती है। आनुपातिक जन्म दर 0.45 प्रति वर्ष पर अचर है और आनुपातिक मृत्यु दर 0.65 प्रति वर्ष पर अचर है। जलाशय को 3,000 मछलियाँ प्रति वर्ष की अचर दर पर पुन:स्थापित किया जाता है और मछुआरों को 2,500 मछलियाँ प्रति वर्ष पकडने की अनुमति दी जाती है। इन धारणाओं के आधार पर मछली समष्टि के लिए निर्देश व्युत्पन्न कीजिए और उसे हल कीजिए। जब प्रारम्भिक समष्टि 2000 और 8000 हो, तो मछली समष्टि के दो मामलों में दीर्घकालिक व्यवहार का वर्णन कीजिए।
- 3. (क) दिखाइए कि विस्थापन m और n और वेग V_1 और V_2 के साथ बिन्दुओं P और Q से गुजरने वाले SHM को क्रियान्वित करने वाले कण का आयाम 'A' क्रमश: संबंध द्वारा दिया गया है :

$$A^{2}(V_{1}^{2}-V_{2}^{2}) = (n^{2}V_{1}^{2}-m^{2}V_{2}^{2})$$

- (ख) एक उद्यमी के लिए अल्पकालीन लागत फलन $q^3 7q^2 + 16q + 90 \quad है। वह मूल्य ज्ञात कीजिए जिस पर उद्यमी एक आदर्श बाजार में उत्पादन बंद कर देता है। आपूर्ति फलन भी व्युत्पन्न कीजिए। 4$
- 4. (क) बड़े शहरों में वाहनों के आवागमन में वृद्धि से बहुत अधिक वायु प्रदूषण हुआ है और साँस की बीमारियों जैसे अस्थमा, ब्रोंकाइटिस आदि की घटनाओं में वृद्धि हुई है। श्वसन रोगों के मामलों में वृद्धि की दर के लिए एक गणितीय निदर्शन बनाने के लिए, आवश्यक और गैर-आवश्यक जिन्हें आपको ध्यान में रखना होगा, चार आवश्यक और दो गैर-आवश्यक के नाम दीजिए।
 - (ख) एक शिकार और परभक्षी समष्टि निदर्श को निरूपित करने वाला अवकल समीकरण निकाय निम्नलिखित है:

$$\frac{dx}{dt} = x^2 - y, \quad \frac{dy}{dt} = x + y$$

(i) उपर्युक्त समीकरण निकय के सभी वास्तविक क्रांतिक बिन्दु प्राप्त कीजिए।

- (ii) इन क्रांतिक बिन्दुओं के प्रकार और स्थायित्व प्राप्त कीजिए।
- 5. (क) धमिनयों में रक्त प्रवाह के लिए एक सरल गिणतीय निदर्शन तैयार करने के लिए किन्हीं दो मान्यताओं को बताइए जिनके लिए पाँइजले का नियम लागू होता है।
 - (ख) एक सार्वजनिक टेलीफोन बूथ में आगमन औसतन 15 प्रति घंटा है। एक कॉल में औसतन 3 मिनट लगते हैं। अगर सिर्फ एक फोन है, तो खोजिए : 4
 - (i) किसी भी समय बूथ में कॉल करने वालों की अपेक्षित संख्या।
 - (ii) बूथ के निष्क्रिय रहने की संभावना के समय का अनुपात।
 - (ग) कोई दवाई एक रोगी की रक्त धारा में r ग्राम/से. की अचर दर से प्रेरित की जा रही है। इसके साथ

ही, यह दवाई किसी भी समय t पर उपस्थित दवाई की मात्रा x(t) के समानुपाती दर से निकाली जा रही है। मात्रा x(t) नियंत्रित करने वाली अवकल समीकरण निर्धारित कीजिए। यदि रक्त धारा में दवाई की प्रारंभिक सांद्रता x_0 है, तो इस दवाई की समय t पर सांद्रता ज्ञात कीजिए। 4

6. (क) तापमान T के लिए प्रारम्भिक सीमांत मान समस्या को एक बेलनाकार रॉड में पृथक् पक्षों के साथ और x=0 और x=L पर समतल सिरों के साथ तैयार कीजिए। $x=0,60^{\circ}\mathrm{C}$ पर रखा गया है। x=L अछूता है। समय t=0 पर पूरी रॉड में तापमान वितरण f(x),0< x < L है। मान लीजिए कि कोई आंतरिक ताप उत्पादन नहीं है। साथ ही, तैयार की गई समस्या का स्थिर-अवस्था समाधान भी ज्ञात कीजिए।

- (ख) किसी बीमारी के नए मामलों की औसत संख्या अनुपातिक है:
 - (i) (सुग्राह्य व्यक्तियों की संख्या)²
 - (ii) संक्रमितों की संख्या
 - त व्यक्तियों की प्रारंभिक जनसंख्या में नए मामलों की औसत संख्या के लिए मॉडल समीकरण की खोज कीजिए। परिणामी समीकरण को भी हल कीजिए।
- 7. (a) दो कम्पनियों x और y की प्रतिभूतियों का प्रतिफल नीचे दिया गया है :

घटना (j)	संयोग	प्रतिफल	
	$\mathbf{P}_{1j} = \mathbf{P}_{2j}$	R_{1j}	R_{2j}
1	0.3	15	12
2	0.25	12	8
3	0.2	9	6
4	0.25	10	9

निवेश सूची P = (0.7, 0.3) और Q = (0.4, 0.6) के प्रत्याशित प्रतिफल ज्ञात कीजिए। निवेश सूची

P और Q के प्रतिफल की तुलना करके आप क्या निष्कर्ष निकाल सकते हैं ? 5

(ख) एक प्रक्षेप्य को एक स्थिर गित v के साथ प्रक्षेपणों के दो अलग-अलग कोणों α और β पर तय किया जाता है, जैसे कि यह एक ही सीमा देता है। दिखाइए कि :

 $\csc \alpha = \sec \beta$

(ग) त्रिज्या 0.8 cm वाली एक वर्षा की बूँद का अंतिम वेग तथा उसके भूमि तक पहुँचने में लगने वाला समय ज्ञात कीजिए, यदि वह 35000 m ऊँचे एक बादल से नीचे गिरना प्रारम्भ करती है। 2