BACHELOR OF SCIENCE (B. Sc.) PHYSICS

Term-End Examination December, 2024

PHE-07 : ELECTRIC AND MAGNETIC PHENOMENA

Time: 2 Hours Maximum Marks: 50

Note: (i) All questions are compulsory.

- (ii) Marks allotted for each question are indicated against it.
- (iii) You may use a calculator.
- (iv) Symbols have their usual meanings.
- (v) The values of physical constants are given at the end.

1. Attempt any *five* parts:

 $5 \times 4 = 20$

(a) Two point charges Q_1 and Q_2 are 1.5 m apart and their combined charge is 20 μ C. If one repels the other with a force of 0.3 N, what are the two charges?

- (b) Using Gauss' law, compute electric field at a point inside a spherical symmetric charge distribution.
- (c) Two equal point charges are fixed at x = -b and x = +b on the x-axis. Another point charge Q is placed at the origin. When Q is displaced by a small distance x along the x-axis, calculate the change in potential energy.
- (d) An air cored solenoid with length of 150 cm and internal diameter of 2 cm has a coil of 1000 turns wound on it. Calculate the inductance of the solenoid.
- (e) A uniform plane wave has a wavelength of 4 cm in free space and 3 cm in a dielectric for which $\mu = 4.7 \times 10^{-7} \text{NA}^{-2}$. Determine the dielectric constant of the dielectric. 4
- (f) Calculate the effective capacitance of three capacitors in such a way that two of them C_1 and C_2 are in series and the third C_3 is in parallel with this series.
- (g) A uniformly charged disc of radius r carries a charge Q and is rotating with constant angular speed ω . Show that the magnetic dipole moment has the magnitude $\frac{(Q\omega r^2)}{4}.$

(h) The electric field of an electromagnetic wave in vacuum is given by:

$$\mathbf{E}_{x}=0,$$

$$E_{\nu} = 0$$

and
$$E_z = 200 \sin \left(2\pi \, 10^8 t + \frac{\pi}{3} x \right)$$

where E is in Vm^{-1} , t in second and x in metre. Determine the frequency and wavelength of the wave, direction of its propagation and the direction of the associated magnetic field.

2. Answer any *two* parts:

 $2 \times 5 = 10$

- (a) ABCD is a square of 0.03 m side and charges of 9×10^{-9} C, -9×10^{-9} C and 18×10^{-9} C are placed at the corners A, C and D, respectively. Calculate the magnitude of electric field at the corner B of the square which is diagonally opposite to the corner D.
- (b) What is the electric potential at the surface of a gold nucleus? The radius of gold nucleus is 6.6×10^{-15} m and the atomic number of gold is Z = 79. Assume the nucleus acts as a point charge and electronic charge $e = 1.6 \times 10^{-19}$ C.

(c) Derive the expression for capacitance per unit length of a cylindrical capacitor. 5

3. Answer any *two* parts:

 $2 \times 5 = 10$

(a) Show that the torque on a current carrying loop kept in a uniform magnetic field is given as:

5

$$\overset{\rightarrow}{\tau} = \overset{\rightarrow}{\mu} \times \vec{B}$$

- (b) Distinguish between diamagnetism and paramagnetism. Is it possible to prepare an alloy of a diamagnetic material and a paramagnetic material so that the alloy will neither be diamagnetic nor paramagnetic? Justify your answer. 2+3
- (c) Write the expression for the force experienced by a charge moving in a region where both magnetic and electric field exist simultaneously. With a neat diagram, explain the working of a velocity selector.

1 + 4

4. Answer any *two* parts:

 $2 \times 5 = 10$

(a) An electron with a velocity of $10^7 \,\mathrm{ms}^{-1}$ enters a magnetic field of strength $1.5 \times 10^{-3} \,\mathrm{Wb}\,\mathrm{m}^{-2}$ at an angle of 30° with it. Calculate the radius of helical path and time taken by the electron for one revolution.

Given
$$\frac{e}{m} = 1.76 \times 10^{11} \text{ C kg}^{-1}$$
.

- (b) Explain the hysteresis curve. Plot hysteresis curves for soft iron and steel material. 3+2
- (c) Show that the wavelength of the plane monocrhomatic sinusoidal electromagnetic wave is given by:

 4+1

$$\lambda = \frac{2\pi}{k}$$

and hence the frequency is given by:

$$f = \frac{c}{\lambda}$$
.

Physical constants:

$$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \ Nm^2 C^{-2}$$

$$e = 1.6 \times 10^{-19} \text{C}$$

$$\in_0 = 8.85 \times 10^{-12} \; Fm^{-1}$$

$$\mu_0 = 4\pi \times 10^{-7} \, NA^{-2}$$

PHE-07

विज्ञान स्नातक (बी. एस-सी.) भौतिक विज्ञान सत्रांत परीक्षा

दिसम्बर, 2024

पी.एच.ई.-07 : वैद्युत और चुम्बकीय परिघटनाएँ

समय: 2 घण्टे अधिकतम अंक: 50

नोट : (i) सभी प्रश्न अनिवार्य हैं।

- (ii) प्रत्येक प्रश्न के अंक उसके सामने दिए गए हैं।
- (iii) आप कैल्कुलेटर का उपयोग कर सकते हैं।
- (iv) प्रतीकों के अपने सामान्य अर्थ हैं।
- (v) भौतिक नियतांकों के मान अंत में दिये गये हैं।
- 1. किन्हीं **पाँच** भागों के उत्तर दीजिए : $5\times4=20$
 - (क) दो बिंदु आवेश Q₁ और Q₂ परस्पर 1.5 m दूरी पर हैं और इनका कुल आवेश 20 μC है। यदि एक आवेश दूसरे आवेश को 0.3 N के बल से प्रतिकर्षित करता है, तो दोनों आवेशों का मान ज्ञात कीजिए।

- (ख) गाउस के नियम का उपयोग कर गोलत: समित आवेश वितरण के अंदर स्थित किसी बिंदु पर विद्युत क्षेत्र परिकलित कीजिए।
- (ग) x—अक्ष के अनुदिश दो बराबर आवेश x = -b और x = +b पर स्थित हैं। एक अन्य बिंदु आवेश Q मूलबिंदु पर स्थित है। यदि Q को x—अक्ष के अनुदिश दूरी x से विस्थापित किया जाता है, तो स्थितिज ऊर्जा में परिवर्तन परिकलित कीजिए।
- (घ) 150 cm लंबी और आंतरिक व्यास 2 cm वाली एक वायु क्रोड परिनालिका पर स्थित कुंडली में 1000 फेरे हैं। परिनालिका का प्रेरकत्व परिकलित कीजिए।
- (ङ) एक एकसमान समतल तरंग का तरंगदैर्घ्य मुक्त आकाश में 4 cm और परावैद्युत माध्यम में 3 cm है जिसके लिए μ=4.7×10⁻⁷NA⁻² है। परावैद्युत माध्यम का परावैद्युतांक परिकलित कीजिए।

- (च) तीन संधारित्र C_1 , C_2 और C_3 इस प्रकार समायोजित हैं कि C_1 और C_2 श्रेणी में जुड़े हैं और C_3 इस श्रेणी समायोजन के समांतर है। संधारित्रों के इस समायोजन की प्रभावी धारिता परिकलित कीजिए।
- (छ) \mathbf{Q} आवेश और r त्रिज्या वाला एकसमान आवेशित डिस्क एक अचर कोणीय वेग ω से घूर्णन कर रहा है। दिखाइए कि चुंबकीय द्विध्रुव आघूर्ण का पिरमाण $\frac{(\mathbf{Q}\omega r^2)}{4}$ है।
- (ज) निर्वात् में एक विद्युतचुंबकीय तरंग का वैद्युत क्षेत्र दिया गया है :

$$\mathbf{E}_{x} = 0$$
,

$$\mathbf{E}_{\mathbf{v}} = \mathbf{0}$$

और
$$E_z = 200 \sin \left(2\pi \, 10^8 t + \frac{\pi}{3} x \right)$$

जहाँ E, Vm^{-1} में है, t सेकंड में है और x मीटर में है। तरंग की आवृत्ति, तरंगदैर्घ्य और संचरण दिशा ज्ञात कीजिए और संगत चुंबकीय क्षेत्र की दिशा ज्ञात कीजिए।

- 2. किन्हीं **दो** भागों के उत्तर दीजिए : $2 \times 5 = 10$
 - (क) ABCD, 0.03 m भुजा वाला एक वर्ग है। इसके शीर्ष बिंदु A, C और D पर क्रमश: 9×10⁻⁹C, -9×10⁻⁹C और 18×10⁻⁹C आवेश रखे गए हैं। वर्ग के शीर्ष B पर वैद्युत क्षेत्र का परिमाण परिकलित कीजिए यदि शीर्ष B और D एक-दुसरे से विकर्णत: विपरीत हों।
 - (ख) स्वर्ण नाभिक के पृष्ठ पर विद्युत विभव का मान क्या होगा ? स्वर्ण नाभिक की त्रिज्या 6.6×10⁻¹⁵m और स्वर्ण की परमाणु संख्या Z = 79 है। मान लीजिए कि नाभिक एक बिंदु आवेश की तरह व्यवहार करता है और इलेक्ट्रॉनिक आवेश e=1.6×10⁻¹⁹ C है। 5
 - (ग) बेलनाकार संधारित्र के लिए प्रति इकाई लंबाई धारिता का व्यंजक व्युत्पन्न कीजिए। 5
- 3. किन्हीं **दो** भागों के उत्तर दीजिए : $2 \times 5 = 10$
 - (क) दिखाइए कि एकसमान चुंबकीय क्षेत्र में स्थित एक धारा-लपू पर लगने वाले बल-आघूर्ण का व्यंजक है:

 $\overset{\rightarrow}{\tau} = \overset{\rightarrow}{\mu} \times \vec{B}$

- (ख) प्रतिचुंबकत्व और अनुचुबकत्व में अंतर बताइए।
 क्या प्रतिचुंबकीय पदार्थ और अनुचुंबकीय पदार्थ
 से एक ऐसी मिश्रधातु बनायी जा सकती है
 जिससे कि मिश्रधातु न तो प्रतिचुंबकीय हो और
 न ही अनुचुंबकीय ? अपने उत्तर की पुष्टि
 कीजिए।
- (ग) किसी ऐसे क्षेत्र जिसमें विद्युत और चुंबकीय क्षेत्र दोनों ही विद्यमान हों, में संचरित आवेश द्वारा अनुभूत बल के लिए व्यंजक लिखिए। एक उपयुक्त चित्र की सहायता से वेग वरणकारी की कार्यप्रणाली को समझाइए।
- 4. किन्हीं **दो** भागों के उत्तर दीजिए : $2 \times 5 = 10$
 - (क) $1.5 \times 10^{-3} \, \mathrm{Wb \, m^{-2}}$ की प्रबलता वाले एक चुंबकीय क्षेत्र में एक इलेक्ट्रॉन $10^7 \, \mathrm{ms^{-1}}$ के वेग से क्षेत्र से 30° के कोण पर प्रवेश करता है। कुंडलिनीय पथ की त्रिज्या और एक परिक्रमण में इलेक्ट्रॉन द्वारा लिया गया समय परिकलित कीजिए।

$$\left(\frac{e}{m}\right) = 1.76 \times 10^{11} \text{C kg}^{-1}$$
 मान लीजिए।

- (ख) शैथिल्य वक्र को समझाइए। नर्म लोहा और इस्पात सामग्री के लिए शैथिल्य वक्र आलेखित कीजिए।
 3+2
- (ग) दिखाइए कि समतल एकवर्णी ज्यावक्रीय विद्युतचुंबकीय तरंग का तरंगदैर्घ्य होता है: 4+1

$$\lambda = \frac{2\pi}{k}$$

और आवृत्ति होती है:

$$f = \frac{c}{\lambda}$$
.

भौतिक नियतांक :

$$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \ Nm^2 C^{-2}$$

$$e = 1.6 \times 10^{-19} \text{C}$$

$$\epsilon_0 = 8.85 \times 10^{-12} \; \mathrm{Fm^{-1}}$$

$$\mu_0 = 4\pi\!\times\!10^{-7}\,NA^{-2}$$