Ph. D. IN MATHEMATICS (PHDMATH)

Term-End Examination

December, 2024

RMT-101: ALGEBRA

Time: 3 Hours Maximum Marks: 100

Note: (i) There are eight questions in this paper.

- (ii) The eighth question is compulsory.
- (iii) Do any six questions from question no. 1to question no. 7.
- 1. (a) Let G be an additive abelian group with subgroups H and K. Show that $G \simeq H \oplus K$ if and only if there are homomorphism :

$$H \mathop{\Longrightarrow}\limits_{l_1}^{\pi_1} G \mathop{\Longrightarrow}\limits_{l_2}^{\pi_2} K$$

such that $\pi_1 \circ l_1 = 1_H$, $\pi_2 \circ l_2 = 1_K$, $\pi_1 \circ l_2 = 0$ and $\pi_2 \circ l_1 = 0$, where 0 is the map sending every element onto the zero element, and $l_1 \circ \pi_1(x) + l_2 \circ \pi_2(x) = x$.

(b) Let R be a ring with identity.

- (i) The centre of the matrix that ring $\operatorname{Mat}_n R$ consists of the matrices rI_n , where r is in the centre of the ring R.
- (ii) The centre of Mat_nR is isomorphic to the centre of R.
- 2. (a) Show that a finite abelian group which is not cyclic contains subgroup which is isomorphic to $\mathbf{Z}_p \oplus \mathbf{Z}_p$, where p is a prime.

7

- (b) If R is a ring with identity, show that $a \in R$ is left quasi-regular if and only if $1_R + a$ is left invertible.
- (c) If R is a ring, not necessarily commutative, and if I is an ideal of R, show that:

 $[\mathbf{R}:\mathbf{I}] = \{r \in \mathbf{R} \mid xr \in \mathbf{I} \text{ for every } x \in \mathbf{R} \}$

is an ideal of R that contains I.

4

- 3. (a) Prove that a module A satisfies ascending chain condition if and only if every submodule of A is finitely generated. 5
 - (b) Show the following conditions on a ring R are equivalent:
 - (i) Every R-module is projective.
 - (ii) Every short exact sequence of R-module is split exact.
 - (iii) Every R-module is injective.

- (c) Show that any finite group is isomorphic to a subgroup of A_n for some n.
- 4. (a) (i) Let A be a module over a commutative ring R. Show that, for $a \in A, \mathbf{O}_a$, defined by $\mathbf{O}_a = \{r \in \mathbb{R} \mid ra = 0\}$ is an ideal of R. If $\mathbf{O}_a \neq \{0\}$, then a is called a torsion element in R.
 - (ii) If R is an integral domain, show that T (A), the set of all torsion elements of A, is a submodule of A.
 - (iii) Show that (ii) may false if R is not an integral domain. 5
 - (b) Let G be a non-abelian group of order $p^3(p)$ prime). Show that the centre of the group is the subgroup generated by all elements of the form $aba^{-1}b^{-1}$.
 - (c) Determine the structure of the abelian group G defined by generators a, b and c and relations 6a + 12b = 0 and 3a + 9b 3c = 0.

- 5. (a) Let R be the ring of all rational numbers with odd denominators. Show that the Jacobson radical J(R) of R is an ideal consisting of all elements in R with even numerators and odd denominators.
 - (b) Find the elementary divisors and invariant factors of the group:

$$G = \mathbf{Z}_{26} \oplus \mathbf{Z}_{42} \oplus \mathbf{Z}_{49} \oplus \mathbf{Z}_{200} \oplus \mathbf{Z}_{1000}$$

- (c) A subgroup H of a group G is called a characteristic subgroup of G if every automorphism of G carries H to itself. 4
 - (i) Show that every characteristic subgroup of a group is normal.
 - (ii) Show that the centre of any group is a characteristic subgroup.
- 6. (a) Prove the following:
 - (i) If A is a torsion abelian group, $\mathbf{Q} \otimes \mathbf{A} = 0$.
 - (ii) $\mathbf{Z}_m \otimes \mathbf{Z}_n \simeq \mathbf{Z}_d$, where d is the g.c.d. of m and n.
 - (b) Find all the Sylow 2-subgroups of A_4 . 6

- 7. (a) If F is a field, then every non-zero element of F[[x]] is of the form x^ku, where u is a unit and k is an integer.
 - (b) Show that every group of prime power order is nilpotent and every finite abelian group is nilpotent.
 - (c) Find the normaliser of the element $\begin{bmatrix} \overline{2} & 0 \\ 0 & \overline{3} \end{bmatrix}$ in $GL_2(\mathbf{Z}_5)$.
- 8. Which of the following are true and which are false? Give reasons for your answers: 10
 - (i) Any two Sylow-*p* subgroups of a finite group are isomorphic.
 - (ii) The multiplicative group of non-zero rational numbers is a free abelian group.
 - (iii) S_3 is indecomposable.
 - (iv) If R is a cumulative ring and M is a maximal ideal, then R/M is a field.
 - (v) For any ring R, a finitely generated R module is also finitely generated as an abelian group.

