Ph. D. PROGRAMME IN MATHEMATICS (PHDMT) Term-End Examination

December, 2024

RMT-102: ANALYSIS

Time: 3 Hours Maximum Marks: 100

Note: Marks are indicated against each question or part thereof. Question No. 1 is compulsory.

Attempt as many questions as you can from Question Nos. 2 to 8. The total marks awarded will be 100.

- 1. Which of the following statements are true *or* false? Justify your answer by giving a short proof of the statement which you think is true or by illustrating with counter-examples for the statements which are false:

 5×2=10
 - (i) The product of two harmonic functions is harmonic.

- (ii) If f(z) is analytic on a domain D and Re f(z) is constant, then f(z) is constant.
- (iii) A closed and bounded set in a metric space is compact.
- (iv) All metric spaces are normed linear spaces.
- (v) The function $f: \mathbf{R} \to \mathbf{R}$ defined by :

$$f(x) = \begin{cases} 1, & \text{if } x \in \mathbf{Q} \\ 0, & \text{if } x \notin \mathbf{Q} \end{cases}$$

where, Q is the set of rationals, is Lebesgue integrable.

- 2. (a) Let (X, d_1) , (Y, d_2) be two metric spaces and $f: X \to Y$. Show that f is continuous at x_0 if and only if for every sequence $\{x_n\}$ in X converging to x_0 , the sequence $\{f(x_n)\}$ converges to $f(x_0)$ in Y.
 - (b) State Fatou's lemma. Show by an example that the inequality in the lemma cannot be replaced by equality.

- (c) Let $X = \mathbb{R}^2$ with discrete metric space d. Then show that $\left\{\left(\frac{1}{n}, \frac{1}{n}\right)\right\}_{n=1}^{\infty}$ does not converge to (0, 0).
- (d) Consider the Banach space $C\{0, 1\}$ (with the sup norm). For any fixed $g \in C\{0, 1\}$, define a map λ_g on $C\{0, 1\}$ such that : 5

$$\lambda_g(f) = \int_0^1 f(t) g(t) dt$$

Show that λ_g is a bounded linear functional. Find $|| \ \lambda_g ||$.

- 3. (a) Show that u(x, y) = sinh x sin y is harmonic in the entire complex plane C. Also find the harmonic conjugate function of u. Is the harmonic conjugate function unique?
 Justify your answer.
 - (b) Prove that every Mobius transformation $T: \mathbf{C}_{\infty} \to \mathbf{C}_{\infty} \text{ has at most two fixed points}$ in \mathbf{C}_{∞} under $T \equiv I$.

- (c) If a function f = u + iv in analytic in a domain Ω such that $v = u^2$, then prove that f is a constant.
- (d) Find the maximum modulus of $f(z) = e^{y} + 1$ on $|z| \le 1$.
- 4. (a) Find the Mobius transformation which maps 0 to i, i to (-1) and ∞ to 1.
 - (b) Let $u: G \to \mathbf{R}$ be harmonic function and let $\overline{B}(a, r)$ be a closed disc contained in G. If γ is the circle |z-a|=r, then show that: 5

$$u(a) = \frac{1}{2\pi} \int_{0}^{2\pi} u(a + re^{i\theta}) d\theta$$

- (c) Let $f \in H(\Omega)$ and $z_0 \in \Omega$ such that $f'(z_0) \neq 0$. Show that f is conformal at Z_0 . 7
- 5. (a) If a set E has finite measure, then show that $L^p(E) \subset L'(E)$.
 - (b) Show that a countable union of open sets in a metric space is open.
 - (c) Let X be a non-empty set and let:
 F₁ = {A ⊂ X : A is countable or A^C is countable}

Check whether \mathbf{F}_1 is a σ -algebra or not. 4

- (d) Let $X = l^{\infty}$, the set of all bounded scalar sequences. Define a function $\|\cdot\|_{\infty} : X \to \mathbf{C}$ defined by $\|\cdot\|_{\infty} = \sup_{n} |x_{n}|$. Show that X is a normed linear space under $\|\cdot\|_{\infty}$. Is X an inner product space? Justify.
- 6. (a) Let X be a normed linear space over K. Let $x_n \in X$ for $n=1,\ 2,\\ ,\ \lambda_n \in K$. Suppose that $x_n \to x$ in X and $\lambda_n \to \lambda$ in K. Then show that :
 - (i) $||x_n|| \rightarrow ||x||$ as $n \rightarrow \infty$
 - (ii) $\{x_n\}$ is bounded
 - (iii) $\lambda x_n \to \lambda x$ as $n \to \infty$
 - (b) Show that C_{00} as a subspace of l^{∞} is not a Banach space.
 - (c) State open mapping theorem and use it to prove closed graph theorem.

- 7. (a) Let φ be a simple function. Then show that:
 - (i) $\int_{A \cup B} \varphi \, dm = \int_{A} \varphi \, dm + \int_{B} \varphi \, \, dm$ where A and B are disjoint measurable sets.
 - (ii) $\int_{\mathbf{E}} a \, \varphi \, dm = a \int \varphi \, dm$

where $a \in \mathbf{R}$ is a constant.

(b) State dominated convergence theorem. Use the theorem to find:

$$\lim_{n\to\infty}\int_1^\infty f_n(x)\,dx$$

where
$$f_n(x) = \frac{\sqrt{x}}{1 + n x^3}$$
.

- (c) Give an example of an algebra which is not a σ -algebra.
- 8. (a) When is a real-valued function said to be measureable? Check whether the following function is Lebesgue measurable:

 3

$$f(x) = \begin{cases} x^2, & \text{if } x \in \mathbf{Q} \\ -x^2, & \text{if } x \notin \mathbf{Q} \end{cases}$$

(b) Let d be a function defined from $\mathbf{R} \times \mathbf{R} \to \mathbf{R}$ by:

$$d\left((x_{1},\,x_{2}),\,(y_{1},\,y_{2})\right)\!=\!\mid x_{1}-y_{1}\mid +\mid x_{2}-y_{2}\mid$$

Check whether d is a metric.

- (c) Let X be a compact metric space and E ⊆ X. If E is closed, then show that E is compact. Is the converse of this statement true? Justify your answer.
- (d) State Hahn-Banach Extension theorem.Illustrate with an example.3