Ph. D. IN STATISTICS (PHDSTAT)

Term-End Examination December, 2024

RST-003: ADVANCED SAMPLE SURVEYS

Time: 3 Hours Maximum Marks: 100

Note: (i) Question No. 1 is compulsory.

- (ii) Attempt any four questions from Question Nos. 2 to 7.
- (iii) Only non-programmable/scientific calculator is allowed.
- (iv) Symbols have their usual meanings.
- 1. (a) State whether the following statements are true or false. Give reasons in support of your answers: $4\times2=8$
 - (i) A simple random sample with replacement of size 16 is drawn from a population with 50 members. The SE of sample mean, if the population variance is known to be 25, will be 1.25.

- (ii) From a population of size 50, a random sample of size 10 is drawn. The MSE of ratio estimator \overline{y}_R of \overline{Y} is calculated for $C_y = 2$ and $C_x = 0.50$, which comes to be $0.08\overline{Y}^2$. The value of the correlation coefficient ρ_{yx} will be 1.
- (iii) The inadequate scrutiny of basic data is a type of sampling error.
- (iv) If the equal size strata are having stratum mean squares in the ratio 1:2:3, then the sample drawn from each stratum under optimum allocation will be in the ratio 1:1:1.
- (b) Differentiate between the following:

 $4 \times 3 = 12$

- (i) Stratified and Cluster sampling
- (ii) Ordered and Unordered estimators
- (iii) One-stage and Two-stage sampling
- (iv) Variance and Mean squared error

2. Consider a form of product estimator:

$$\overline{y}_{pg} = \frac{\overline{y}(x+\alpha)}{(X+\alpha)}$$

for estimating the population mean \overline{Y} , where α is a constant.

- (i) Derive the approximate bias and mean squared error of $\stackrel{-}{y_{pg}}$.
- (ii) Determine the value of α , for which the mean squared error is minimum.
- 3. Define two-stage sampling and give its advantages. Write an unbiased estimator of population mean and derive its sampling variance.
- 4. A simple random sample without replacement of villages in each stratum of a district was selected and the number of apple orchards for various strata are given below:

Stratum	Total number	Number of villages selected	Number of orchards in the selected villages
A	75	10	2, 5, 1, 9, 6, 7, 4, 7, 5, 3
В	57	9	21, 11, 7, 5, 6, 19, 5, 24, 30
С	43	6	3, 10, 4, 11, 18, 19
D	25	5	30, 42, 20, 38, 29

Estimate the number of orchards in the district. Determine whether there is any gain due to stratification over simple random sampling. 20

- 5. Show that the Hurwitz and Thompson estimator is an unbiased estimator of population mean. Also, derive the expression for its variance.
- 6. Suppose there are two strata and equal size of samples are drawn from both the strata, i.e. $n_1 = n_2$. Another option to draw the samples is optimum allocation, i.e. $n_{\rm lopt}$ and $n_{\rm 2opt}$. Let $V_{\rm eq}$ and $V_{\rm opt}$ denote the variances under equal and optimum allocation respectively, then assuming N_1 and N_2 are large, show that:

$$\frac{V_{eq} - V_{opt}}{V_{opt}} = \left(\frac{\delta - 1}{\delta + 1}\right)^{2}$$

where
$$\delta = \frac{n_{\text{lopt}}}{n_{\text{2opt}}}$$
.

7. Write short notes on any *two* of the following:

10 + 10

- (a) Successive Sampling
- (b) Post-stratification
- (c) Double Sampling

 $\times \times \times \times \times \times \times$