Ph. D. IN STATISTICS (PHDSTAT)

Term-End Examination December, 2024

RST-004: ADVANCES IN STATISTICS

Time: 3 Hours Maximum Marks: 100

Note: (i) Question No. 1 is compulsory.

- (ii) Attempt any four questions from question no. 2 to 7.
- (iii) Non-programmable/Scientific calculator is allowed.
- (iv) Symbols have their usual meanings.
- 1. (a) State whether the following statements are True *or* False. Give reasons in support of your answer: $5\times2=10$
 - (i) In a regression model:

$$Y = B_0 + B_1 X_1 + B_2 X_2 + B_3 X_3 + C$$

If $H_0: B_1=0$ and $H_0: B_3=0$ are rejected whereas $H_0: B_2=0$ is not rejected, then the variable X_2 will remain in the model.

[2] RST-004

- (ii) In regression analysis, if R^2 is 0.9717 for a given data of 12 values on Y as dependent variable and X_1 and X_2 as independent variables, then adjusted R^2 will be 0.7454.
- (iii) A prior is said to be improper prior if posterior distribution belongs to the same family of the prior distribution.
- (iv) Inversion method of sampling is used when cumulative distribution function exists.
- (v) If there are 3 regressor variables and 10 pair of observations, then degrees of freedom for residuals will be 12.
- (b) Explain the significance of residual analysis.
- 2. Let $X_1, X_2,, X_n$ be a random sample taken from normal distribution with mean μ and variance 1. If prior distribution of μ is normal with mean θ and variance 1, then find:
 - (i) posterior distribution of μ,

B-1463/RST-004

	(ii)	Bayes estimate of $\boldsymbol{\mu}$ under SELF and		
		LINEX loss functions. 20		
3.	(a)	Describe Jeffrey's prior. Let $X_1, X_2,, X_n$		
		be a random sample from exponential		
		distribution with mean θ . Construct		
		Jeffrey's prior. 10		
	(b)	Explain loss function. Define the following:		
		5+5		
		(i) Squared error loss function		
		(ii) Entropy loss function		
4.	Exp	olain Metropolis-Hastings method of		
	gen	erating sample. Also write its algorithm. 20		
5.	(a)	Differentiate between the forward and		
		backward selection methods. 8		
	(b)	Describe residual and normal probability		
		plots. 8		
	(c)	Describe conjugate priors. 4		

6. A company believes that the number of sales-

persons employed is a good predictor of sales.

The following table exhibits sales (in thousand

[3]

rupees) and number of salespersons employed for different years: 20

Sales	No. of Salespersons
12	10
13	15
11	12
15	18
18	21
18	22
14	19
13	15

- (i) Draw the scatter diagram of the data.
- (ii) Fit a regression line.
- (iii) Test whether no. of salespersons has any significant effect on the sale at 5% level of significance.
- (iv) Construct 95% confidence interval for the slope.

It is given that:

$$t_{(6),0.05} = 1.943; \quad t_{(6),0.025} = 2.447; \quad t_{(7),0.05} = 1.895; \\ t_{(7),0.025} = 2.365$$

7. Explain in brief Bayesian approach. Also obtain the posterior distribution of θ in exp (θ) when the prior distribution of θ is gamma (α , β). 20

$$\times \times \times \times \times \times$$