Ph. D. IN STATISTICS (PHDSTAT)

Term-End Examination

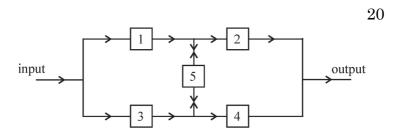
December, 2024

RST-006 : RELIABILITY THEORY AND MODELLING

Time: 3 Hours Maximum Marks: 100

Note: (i) Attempt any five questions.

- (ii) Use of scientific calculator (non-programmable) is allowed.
- (iii) Symbols have their usual meanings.
- 1. (a) Define Laplace and Laplace-Stieltjes transforms.
 - (b) Find the inverse Laplace transform of: 8


$$\frac{s^2 + s}{(s^2 + 1)(s^2 + 2s + 2)}.$$

(c) Evaluate:

8

$$L\left(\int_0^t e^t \frac{\sin t}{t} dt\right)$$

- Define stochastic process and types of stochastic process with at least *one* example of each type.
- Define Reliability. What are basic functions in Reliability? Also discuss reliability evaluation of series, parallel and k-out-of-n simple systems.
- 4. Using conditional probability approach, evaluate the reliability of the system shown in the figure given as follows for a mission of 1000 hours. It is given that each component has reliability of 0.95 for a mission of 1000 hours. Assume that the components are independent:

5. Define each of the following with example:

 $5 \times 4 = 20$

- (i) Markov process
- (ii) Markov chain
- (iii) Transition matrix
- (iv) Poisson process
- (v) Renewal process
- 6. Describe regenerative point technique to solve reliability model.
- 7. Given the following 10 failure times in hours, estimate R(t), F(t), f(t) and λ(t) and compute a 90% confidence interval for the MTTF: 20 24.5, 18.9, 54.7, 48.2, 20.1, 29.3, 15.4, 33.9, 72.0, 86.1