B. SC. (APPLIED SCIENCE-ENERGY) (BSCAEY)

Term-End Examination

June, 2025

BEY-018: LINEAR ALGEBRA AND CALCULUS

Time: 3 Hours Maximum Marks: 70

Note: (i) Question No. 1 is compulsory.

- (ii) Attempt any **six** questions from the remaining question nos. **2** to **9**.
- (iii) Use of scientific calculator (non-programmable) is allowed in exam.
- (iv) Symbols have their usual meanings.
- 1. (a) If:

2

$$A = \begin{bmatrix} 2 & 4 & 5 \\ -3 & 6 & 7 \\ 1 & 8 & 9 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix},$$

find AB.

(b) Find the constant λ , so that the vectors:

$$\vec{a} = 2\hat{i} - \hat{j} + \hat{k},$$

$$\vec{b} = \hat{i} + 2\hat{j} - 3\hat{k}$$

and $\vec{c} = 3\hat{i} + \lambda\hat{j} + 5\hat{k}$

are coplanar.

- (c) Find the general solution of: 2 y'' + 8y' + 16y = 0
- (d) Solve: $\frac{dy}{dx} = \frac{y}{x} + x \sin \frac{y}{x}$
- (e) Find the area of a parallelogram whose adjacent sides are $\hat{i} 2\hat{j} + 3\hat{k}$ and $2\hat{i} + \hat{j} 4\hat{k}$.
- 2. Find A^{-1} , where $A = \begin{bmatrix} 4 & 2 & 3 \\ 0 & -1 & -2 \\ 5 & -3 & 6 \end{bmatrix}$. 10
- 3. (a) A particle is moving in a straight line according to the following relation between distance (s) and time (t): 5

$$s = t^3 - 9t^2 + 3t + 1$$

s is measured is metres and t is seconds. When the velocity is -24 m/s, find the acceleration.

(b) Given $y_1 = e^{-x}$ is one solution, find the second linearly independent solution of:

$$y'' + 2y' + y = 0$$

- 4. (a) Find $\frac{dy}{dx}$, where $x^3 + y^2 + \sin xy = 0$.
 - (b) Use method of Laplace transform to solve the initial value problem (IVP): 6

$$y'' - y' - 2y = 0,$$

$$y(0)=1$$
,

$$y'(0) = 0.$$

5. (a) Prove that:

$$\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = 0$$

- (b) If the sum of two unit vectors is a unit vector, prove that the magnitude of their difference is $\sqrt{3}$.
- 6. (a) If $u = e^{xyz}$, find the value of:

$$\frac{\partial^3 u}{\partial x \, \partial y \, \partial z}$$

5

4

5

(b) Expand the polynomial:

$$x^{5}-2x^{4}+x^{3}-x^{2}+2x-1$$
 in powers of $(x-1)$.

7. (a) Draw the graph of the curve $y = \cos^2 x$.

(b) Check whether the mean value theorem is applicable to the function $y=1-x^{2/3}$ over the interval $\begin{bmatrix} -1,1 \end{bmatrix}$. If yes, find the value of c.

8. (a) Without expanding prove that: 6

$$\begin{vmatrix} ab & 1 & c(a+b) \\ bc & 1 & a(b+c) \\ ca & 1 & b(c+a) \end{vmatrix} = 0$$

- (b) Find the values of 'a' for which the vectors $3\hat{j}+2\hat{j}+a\hat{k}$ and $\hat{i}+a\hat{j}+3\hat{k}$ are (i) perpendicular and (ii) parallel.
- 9. (a) Find the differential equation satisfied by the two parameter family of functions $c_1x + c_2x^2$.
 - (b) Use the method of variation of parameter to obtain a particular solution of:

$$y''' - 2y'' - y' + 2y = e^{4x}$$

$$\times \times \times \times \times$$