No. of Printed Pages: 5

POST GRADUATE DIPLOMA IN ANALYTICAL CHEMISTRY (PGDAC)

Term-End Examination June, 2025

MCH-004 : ELECTRO ANALYTICAL AND OTHER METHODS

Time: 3 Hours Maximum Marks: 75

Note: Attempt any five questions. All questions carry equal marks.

- (a) Explain the nature of plots of conductometric titration of a mixture of a strong acid and a weak acid vs. a strong base.
 - (b) What is meant by an ion selective electrode? Describe any *two* uses of each electrode.

- (c) Explain the metal-metal ion interface during the development of electrode potential with a suitable illustration. 5
- 2. (a) Write the advantages of Coulometric titrations. 5
 - (b) Describe the principle of anodic stripping voltammetry. How is this technique used for the determination of trace metal ions in environmental samples?
 - (c) What is meant by the solubility product of a sparingly soluble salt? How can the solubility product of such salts be determined?
- 3. (a) A platinum electrode is immersed in a solution which is 10^{-1} M in KMnO₄ and 5×10^{-4} M in MnSO₄. Calculate the electrode potential at 25°C for pH zero.5

$$(E_{MnO_4^-/Mn^{2+}}^{^{\circ}}=1.51V)$$

	(b)	Explain any two of the following: 5
		(i) Solid state membrane electrode
		(ii) Calomel electrode
		(iii) Indicator electrode
	(c)	What is meant by diffusion current ?
		Write down Ilkovic equation explaining
		each term involved. 5
4.	(a)	What is the effect of complexing agent
		on the reduction of metal ion in
		polarography? 5
	(b)	Explain the procedure of determination
		of Zinc with EDTA with the help of
		amperometry. 5
	(c)	Briefly describe the steps involved in
		voltammetry. 5
5.	(a)	Explain the basic principle of Neutron
		Activation Analysis (NAA) with a
		suitable diagram. 5
	(b)	What is radio tracer technique ?
		Discuss its applications 5

- (c) Explain how molar and equivalent conductivity of an electrolyte are related to each other.
- 6. (a) Describe the principle of Differential
 Thermal Analysis (DTA). How does a
 DTA curve differ from Thermogravimetric (TG) curve?
 5
 - (b) A thermogram of a magnesium compound shows a loss of 91.0 mg from a total of 175.0 mg used electrolyte. Identify the compound either as MgO, MgCO₃ or MgC₂O₄.
 - (c) What are the common sources of errors in thermogravimetric analysis? 5
- 7. (a) Discuss the effect of the following factors on the conductance of a solution:
 - (i) Temperature and pressure
 - (ii) Solvent
 - (b) Write the different sources of background radiation. Explain any *two* of them in brief. How is background activity minimized?

- (c) Give the application of electrogravimetry in quantitative analysis of metals.
- 8. (a) What is liquid-junction potential?

 Explain giving suitable diagram. How can these potentials be minimized? 5
 - (b) Fill in the blank spaces in the following nuclear reactions: 5

(i)
$$^{27}\text{Al} + \dots \longrightarrow ^{30}\text{P} + n$$

(ii)
60
Ni + 4 He \longrightarrow 62 Zn +

(iii)
$$^{15}N + ^{1}H \longrightarrow + ^{4}He$$

(iv)
$$^{11}B + \dots \longrightarrow ^{9}Be + ^{4}He$$

(v)
35
Cl + $n \longrightarrow \dots + \gamma$

(c) Give any *five* advantages of Isotopic Dilution Analysis (IDA). 5

 $\times \times \times \times \times$