MCH-011

No. of Printed Pages: 5

M. SC. IN CHEMISTRY / M. SC. IN ANALYTICAL CHEMISTRY

(MSCCHEM/MSCANCHEM)

Term-End Examination June, 2025

MCH-011: INORGANIC CHEMISTRY—I

Time: 2 Hours Maximum Marks: 50

Note: Attempt any five questions. All questions carry equal marks.

1. (a) What are isoelectronic ions? How does their size vary with the change of atomic number? 2+3

(b)	Explain	the periodici		ity in	
	electronega	tivity	values	of	elements
	giving suita	agram.		2+3	

- 2. (a) What are the shapes of the ions of solid Pentachloride ? Comment on the shape of PCl_4^+ ?
 - (b) How is $S_3N_3^-$ prepared ? Give its qualitative molecular diagram. 5
- 3. (a) Explain the structure of $(BeMe_2)_n$. 3
 - (b) Give the steps to calculate the EAN of metal carbonyls along with a suitable example.
- 4. (a) What is the Tolman cone angle in phosphines? Draw a suitable diagram to explain it.

(b)	What hapticities are possible for the
	interaction of each of the following
	ligands with a single d -block metal
	atom such as cobalt?

- (i) C_2H_4
- (ii) Cyclopentadienyl
- (iii) C₆H₆
- 5. (a) What are the differences between metalloboranes and metallocarboranes?

5

- (b) Explain the capping rule with suitable example in metal carbonyl type cluster.
- 6. (a) Explain Jahn-Teller effect in the d^9 configuration of CuCl_2 .

- (b) What is the shape of the curve which shows the lattice energies of the divalent metal halides of the 1st series?
 Also, give the reasons for obtaining such a shape of the curve in the light of crystal field theory.
- 7. (a) With a suitable diagram, explain the magnetic properties of lanthanoids. 5
 - (b) With a suitable illustration, explain the super exchange model of antiferromagnetic interaction in d-metal complexes.
- 8. (a) The gas-phase ion V^{3+} has a ${}^3\underline{F}$ ground term. The ${}^1\underline{D}$ and ${}^3\underline{P}$ terms lie respectively 10642 and 12920 cm⁻¹

above it. The energies of the terms are given in terms of Racah parameters as $\underline{\mathbf{E}}(^3\underline{\mathbf{F}}) = \underline{\mathbf{A}} - 8\underline{\mathbf{B}}, \quad \underline{\mathbf{E}}(^3\underline{\mathbf{P}}) = \underline{\mathbf{A}} + 7\mathbf{B},$ $\underline{\mathbf{E}}(^1\underline{\mathbf{D}}) = \underline{\mathbf{A}} - 3\underline{\mathbf{B}} + 2\underline{\mathbf{C}}.$ Calculate the values of B and C for V^{3+} .

(b) What does the negative sign of the Cotton effect for the lowest energy CD band of the <u>fac</u>-(-) and <u>mer</u>-(-) isomers suggest? Explain.

 $\times \times \times \times \times$