M. SC. (CHEMISTRY)/M. SC. (ANALYTICAL CHEMISTRY) (MSCCHEM/MSCANCHEM) Term-End Examination June, 2025

MCH-018 : QUANTUM CHEMISTRY AND GROUP THEORY

Time: 2 Hours Maximum Marks: 50

Note: Attempt any five questions. All questions carry equal marks.

You may use the following, wherever required:

$$h = 6.626 \times 10^{-34} \,\mathrm{Js}$$

$$m_e = 9.11 \times 10^{-31} \text{ kg}$$

$$c = 3.0 \times 10^8 \; \mathrm{ms^{-1}}$$

$$R_{\rm H} = 2.17869 \times 10^{-18} \, J$$

$$\mu_{\rm H} = 0.9995 \ m_e$$

$$\epsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{m}^{-1}.$$

- 1. Answer any *five* of the following questions in brief: $5\times2=10$
 - (a) State Heisenberg's uncertainty principle and give its significance for quantum mechanical systems.
 - (b) Define Hermitian operators and give their significance.
 - (c) Why are the orbitals of a given principal quantum number not degenerate in multi-electron atoms?
 - (d) "Symmetry operations are not same as symmetry elements." Comment.
 - (e) What are the ranges of the spherical polar coordinates viz. r, θ and ϕ ?
 - (f) State the Born-Oppenheimer approximation and give its importance in the study of molecular systems.
 - (g) "The ground state energy of a particle confined to a one-dimentional box cannot be zero." Comment.

A-200/MCH-018

- 2. (a) (i) State the principle of corresponding states.
 - (ii) Evaluate the commutator [A, B], where:

$$A = \left(\frac{d}{dx} - x\right)$$
 and $B = \left(\frac{d}{dx} + x\right)$

- (b) (i) Calculate the energy difference between the ground state and the first excited state for an electron confined to a one-dimensional box of length 10 nm.
 - (ii) The longest wave length transition in butadiene is observed at 210 nm.If we assume butadiene to behave like one-dimensional box, calculate the length of the box.
- 3. (a) The Schrödinger wave equation for a particle confined in a three-dimensional box with its walls at infinite potential is given below:

$$\left[\frac{-\hbar^2}{2m}\nabla^2\right]\psi(x,y,z) = \mathrm{E}\psi(x,y,z)$$

Separate this expression into three equations; an equation for each dimension.

(b) (i) Using the following recursion relation:

$$H_{n+1}(x) = 2x H_n(x) - 2n H_{(n-1)}(x)$$

along with the values $H_0(x) = 1$ and $H_1(x) = 2x$, determine the expression for $H_2(x)$.

- (ii) Derive an expression for the moment of inertia for two masses m_1 and m_2 moving on a rigid massless bar about the centre of mass at distances r_1 and r_2 respectively.
- 4. (a) Calculate the energy required to ionise a hydrogen atom in its ground state. 5
 - (b) (i) What is Russell Saunders' coupling?

 How does it help in determining the total angular momentum in a multi-electron atom?

- (ii) Draw and describe the radial probability distribution plot for 2s orbital of Hydrogen atom.
- 5. (a) What is variation theorem ? Use the trial wave function, $\phi = x(L-x)$ to estimate the ground state energy of a particle of mass m confined to a one-dimensional box of length L.
 - (b) Identify the symmetry elements of H₂O molecule and assign it to a point group.
 Justify your classification.
- 6. (a) Briefly describe the process of bond formation in hydrogen molecule by valence bond approach. Design the trial wave function for hydrogen molecule according to VBT.
 - (b) Design a trial wave function for hydrogen molecule ion by LCAO approximation. Use variation method for energy minimisation and derive expression for the energy levels.

- 7. (a) Draw the molecular orbital energy level diagram for CO and calculate the bond order.
 - (b) State the limitations of Hückel's molecules orbital theory and explain how the Extended Hückel's Theory
 (EHT) addresses some of these limitations.

