MCS-013

No. of Printed Pages: 7

MASTER OF COMPUTER APPLICATIONS (REVISED)/BACHELOR OF COMPUTER APPLICATIONS (REVISED) (MCA/BCA) Term-End Examination

MCS-013: DISCRETE MATHEMATICS

June, 2025

Time: 2 Hours Maximum Marks: 50

Note: Question No. 1 is compulsory. Attempt any three questions from the rest.

- (a) What is dual of a Boolean expression?
 Explain the principle of duality with the help of an example.
 - (b) Let there be a function $f: X \to Y$, where X and Y are sets as given below:

$$X = \{a, b, c, d\}, Y = \{p, q, r, s\}$$

$$f = \{(a, p), (b, q), (c, r), (d, s)\}$$

Explain whether *f* is:

3

- (i) one-to-one
- (ii) onto
- (iii) bijective.
- (c) Show that:

4

$$\sim (p \lor q) = \sim p \land \sim q$$

and
$$\sim (p \land q) = \sim p \lor \sim q$$

(d) Determine the domain for which the functions:

$$f(x) = 3x^2 - 1$$

and g(x) = 1 - 5x

are equal. Also, find a domain for which the functions are not equal.

(e) Prove that:

$$(A-B) \cup B = A \cup B$$

- (f) Determine n, if 2P(n, 2) + 50 = P(2n, 2) .2
- (g) Draw Venn diagram to represent (A Δ B) and (A \cap B \cup C) for sets A, B and C. 2
- (h) If there are 12 persons in a party, and if each two of them shake hands with each other, how many handshakes will happen in the party?

2. (a) Show that for integers greater than zero:

$$2^n >= (n+1)$$

- (b) If $f: \mathbb{R} \to \mathbb{R}$ is a function such that f(x) = 3x + 5, prove that if f is one-one onto.
- (c) Verify that $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$ is a tautology.
- (d) Find the Boolean expression for the output of the circuit given below: 2

3. (a) Verify whether $\sqrt{5}$ is rational or irrational.

- (b) Explain pigeonhole principle with example.
- (c) Given $X = \{1, 3, 5, 7\}$ and $Y = \{2, 3, 5, 8\}$:
 - (i) List the elements of $(A \times B) \times (B A)$.
 - (ii) Is $(A \times B) \times (B A)$ a subset of $A \times B$?
- (d) If $P(X) = \frac{1}{4}$ and $P(Y) = \frac{2}{5}$, find: 2
 - (i) $P(A \cap B)$
 - (ii) $P(A \cap B')$
- 4. (a) How many solutions are there of: 3

$$x + y + z = 17$$

subject to the constraints:

$$x \ge 1; y \ge 2; z \ge 3$$

- (b) Let $A = \{a, b, c, d\}$, $B = \{1, 2, 3\}$ and $R\{(a, 2), (b, 1), (c, 2), (d, 1)\}$. Tell whether R is a function or relation? Justify your answer.
- (c) Determine in how many ways can 25 identical books be placed in 5 identical boxes.
- (d) Find how many 4-digit numbers are odd.
- 5. (a) Show that:

$$(1 \times 2) + (2 \times 3) + \dots + n(n+1)$$

$$=\frac{n(n+1)(n+2)}{3}$$

(b) Write negation of the following statement, using propositional logic: 2 "If it is raining, then the game is cancelled."

B-1082/MCS-013

- (c) From the digits 1, 2, 3, 4, 5, 6; how many three-digit odd numbers can be formed?
 - (i) When the repetition of digits is allowed?
 - (ii) When the repetition of digits is not allowed?
- (d) Show that in any group of 30 people, wecan always find 5 people who were bornon the same day of the week.

 $\times \times \times \times \times$