MASTER OF COMPUTER APPLICATIONS (MCA) (REVISED)

Term-End Examination June, 2025

MCS-053 : COMPUTER GRAPHICS AND MULTIMEDIA

Time: 3 Hours Maximum Marks: 100

Note: Question No. 1 is compulsory. Answer any three questions from the rest.

- (a) Write 2D transformation matrix in Euclidean and homongeneous coordinate system for reflection and shear operations.
 - (b) Explain Area Subdivision method of visible surface detection with diagram. 5

- (c) What is Frame Buffer? Explain the role of frame buffer in controlling colour and intensity of display.5
- (d) Differentiate between the following:

 $3 \times 5 = 15$

- (i) Cohen-Sutherland Algorithm *vs*Sutherland-Hodgman Algorithm
- (ii) Scanline Polygon fill Algorithm vs.Flood fill Algorithm
- (iii) Parallel Projection vs. Perspective Projection
- (e) Differentiate between Graphics and Animation. List various types of animations and explain any one of them.
- (f) Write 2-D rotational transformation matrix in Euclidean coordinate system.
 Verify that two successive rotations are additive in nature.

- 2. (a) Write the Bresenham line generation algorithm. Illustrate it by digitizing the line with endpoints (20, 10) and (30, 18).
 - (b) Explain parametric continuities with suitable diagram.
 - (c) Compare and contrast Gourand shading and Phong shading.6
- 3. (a) Given a triangle with vertices (0, 0),
 (1, 0) and (1, 1). Rotate the triangle by
 90 degrees in anticlockwise direction
 with respect to origin and find the new
 coordinates.
 - (b) Write the mid-point circle generation algorithm and use it to generate an arc of r = 10 units in the 1st quadrant from x = 0 to x = y.
 - (c) What is the problem of aliasing? How can this problem be resolved? 5

- 4. (a) Explain the term Principal Vanishing
 Point in context of perspective
 projection with a suitable diagram. 6
 - (b) What are Bezier curves? Discuss the equation and properties of Bezier curves. Also, prove that $P(u=0) = p_0$. 8
 - (c) Write DDA Algorithm and use it to generate a line segment from (2, 4) to (9, 9).
- 5. Write short notes on the following: $4\times5=20$
 - (a) Taxonomy of Projection
 - (b) Z-Buffer Algorithm
 - (c) Authoring tools
 - (d) Windowing transformations

 $\times \times \times \times \times$