## MASTER OF COMPUTER APPLICATIONS

(MCA-NEW)

## Term-End Examination June, 2025

## MCS-211 : DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 Hours Maximum Marks: 100

Weightage: 70%

Note: Question No. 1 is compulsory and carries
40 marks. Attempt any three questions
from the rest.

- (a) Define algorithm. State any four important characteristics of an algorithm.
  - (b) Write linear search algorithm and do analysis of this algorithm for best case and worst case.

(c) Solve the following recurrence equation:

$$T(n) = T(\frac{n}{2}) + n$$
 for  $n > 1$ 

$$T(n) = 1 for n = 1$$

- (d) What is NP class of problem? Explain with the help of an example problem. 5
- (e) What is Adjacency matrix? Write adjacency matrix for the following graph:



(f) Define the big theta notation. Show that:

$$n^2 + 3\log n = \theta(n^2)$$

(g) Consider the following four matrices and their dimensions: 5

Find the optimal parenthesization of matrix-chain multiplication  $A \times B \times C \times D$ .

- (h) Explain the working principle of Floyd-Warshall's algorithm.5
- 2. (a) Explain Strassen's Matrix

  Multiplication Algorithm and apply the same to multiply the following two matrices:

$$A = \begin{bmatrix} 5 & 6 \\ -4 & 3 \end{bmatrix}, B = \begin{bmatrix} -7 & 6 \\ 5 & 9 \end{bmatrix}$$

(b) Write an algorithm for quick sort. Sort the following sequence of numbers using quick sort:

Analyze the time complexity of quick sort in best and worst case. 10

- 3. (a) Write an algorithm for merge sort and analyse its best and worst case run time complexity.
  - (b) Write and explain Prim's algorithm and use it to find a minimal spanning treefor the graph given below: 10



4. (a) Write an algorithm for solving fractional Knapsack problem. Using this algorithm, solve the following fractional Knapsack problem:

[5]

Capacity of Knapsack: 5 kg

Number of items: 5

| Objects | Weight (kg) | Profit |
|---------|-------------|--------|
| 1       | 2           | 10     |
| 2       | 3           | 5      |
| 3       | 5           | 15     |
| 4       | 7           | 7      |
| 5       | 1           | 6      |

(b) Write Dijkstra's algorithm and use it to find the minimum distance of all the nodes from node 'b' which is taken as the source node, for the following graph:



- (a) Differentiate between NP-complete and NP-hard problem. State CLIQUE problem and vertex-cover problem. 10
  - (b) Explain the use of master method.

    Write and interpret all the three cases
    of the master method to solve
    recurrence relation problem.

 $\times \times \times \times \times$