MASTER OF COMPUTER APPLICATIONS [MCA (NEW)]

Term-End Examination June, 2025

MCS-224 : ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Time: 3 Hours Maximum Marks: 100

Weightagte: 70%

Note: Question No. 1 is compulsory. Attempt any three questions from the rest.

- (a) Compare Artificial Narrow Intelligence,
 Artificial General Intelligence and
 Artificial Super Intelligence.
 - (b) Discuss descriptive, predictive and prescriptive analytics in machine learning.5
 - (c) Differentiate between linear regression and polynomial regression techniques. 5

- (d) Let C(x) mean "x is a used car dealer",and H(x) mean "x is honest". Translateeach of the following into Englishsentences:
 - (i) $(\forall x) C(x) \rightarrow H(x)$
 - (ii) $(\exists x)(C(x) \land H(x))$
 - (iii) $(\exists x)(H(x) \rightarrow C(x))$
- (e) With reference to D-S (Dempster Shafer) theory, what are the different types of evidences? Explain them briefly.
- (f) Briefly discuss the concept of classification, regression and clustering.Also give the list of algorithms for each concept.
- (g) What is the purpose of feature extraction in machine learning?Explain in brief.

- (h) What is the advantage of using Princer algorithm over Apriori algorithm ?Explain in brief.
- (a) Differentiate between Hierarchical clustering and Partition-based clustering with a suitable example of each concept.
 - (b) Let the following points are to be clustered into 3 groups: 10 $A_1(2,11), \ A_2(2,15), \ A_3(8,5), \ A_4(6,8),$

$$A_5(7,9), A_6(6,3), A_7(1,4), A_8(4,8)$$

Assume that the initial cluster centers are $A_1(2,11)$, $A_3(8,5)$ and $A_8(4,8)$. Using the Manhattan distance measure and K-mean clustering algorithm, calculate the cluster heads after third iteration.

3. (a) For the following given transactions

Data_set, generate association rules

using Apriori algorithm. Assume support = 50% and confidence = 75%:10

Transaction_Id	Set of Items	
T_1	Pen, Notebook, Pencil,	
	Colours	
T_2	Pen, Notebook, Colours	
T_3	Pen, Eraser, Scale	
T_4	Pen, Colours, Eraser	
T_{5}	Notebook, Colours, Eraser	

(b) Let the training dataset for tissue paper whether it is 'Poor' or 'Fine' based on two properties (acid durability and strength) are as follows:

Acid Durability (Sec.)	Strength (gm/cm ²)	Class
7	7	Poor
7	4	Poor
3	4	Fine
2	4	Fine

Suppose there is an unknown sample X = (3,7), where 3 is acid durability and 7 is strength, find its class using KNN algorithm. (Assume K = 3 and use Euclidean distance).

4. (a) Write ID3-algorithm for creating decision tree for any training dataset.

10

- (b) Explain Dempster Shafer theory with a suitable example. 10
- 5. (a) Suppose a six-faced die is thrown twice.

 Describe each of the following events:

10

- (i) The maximum score is 6.
- (ii) The total score is 9.
- (iii) Each throw results in an even score larger than 2.
- (b) Consider the following missionaries and cannibal problem: 10

Three missionaries and three cannibals are side of a river, along with a boat that can hold one or two people. Find a way to get everyone to the other side, without ever leaving a group of missionaries out-numbered by cannibals.

- (i) Formulate and solve the above problem.
- (ii) Draw the state-space search graph for solving this problem.

