MASTER OF COMPUTER APPLICATIONS (MCA) Term-End Examination

June, 2025

MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time: 3 Hours Maximum Marks: 100

Note: (i) Question No. 1 is compulsory.

- (ii) Attempt any **three** questions from the rest.
- (iii) Use of calculator is allowed.
- 1. (a) Let $a = \cdot 41$, $b = \cdot 36$ and $c = \cdot 70$. Prove that:

$$\frac{a-b}{c} \neq \frac{a}{c} - \frac{b}{c}$$

- (b) Consider the number $\frac{2}{3}$. Its floating point representation rounded to 5 decimal places is .66667. Find out to how many decimal places the approximate value of $\frac{2}{3}$ is accurate.
- (c) Obtain the positive root of the equation $x^2 1 = 0$ by Regula-Falsi method. 5
- (d) Find the smallest root of $x^7 + 9x^5 13x 17 = 0$ using Newton-Raphson methods. 5
- (e) Evaluate the missing term in the following using backward differences of Interpolation: 5

x	$f(x) = \log x$
100	2.000
101	2.0043

102	?
103	2.0128
104	2.0170

- (f) Given $f(x) = \sin x$, f(0.1) = 0.09983, f(0.2) = 0.19867, use the method of linear interpolation to find f(0.16). Find the error in f(0.16).
- (g) Calls at a particular call center occur at an average rate of 8 calls per 10 minutes. Suppose that the operator leaves his position for a 5 minutes coffee break. What is the chance that exactly one call comes in while the operator is away?
- (h) Solve the initial value problem to calculate approximation for y(0.1), y(0.2) using Euler's method with h = 0.1.
- 2. (a) Compute the square root of *a*, using Newton's method. How does the error behave?
 - (b) Solve the following linear system of equations:

$$x_1 + x_2 + x_3 = 3$$

$$4x_1 + 3x_2 + 4x_3 = 8$$

$$9x_1 + 3x_2 + 4x_3 = 7$$

using Gauss Elimination method.

3. (a) Find the interpolating polynomial that fits the following data: 10

x_k	f_k
6	2
1	3
2	12
5	147

using the Lagrange's interpolation formula.

(b) Calculate the value of the integral: 10

$$\int_{4}^{5.2} \log x \ dx$$

by:

(i) Trapezoidal rule

(ii) Simpson's
$$\frac{1}{3}$$
 rule

- 4. (a) Using Runge-Kutta method of fourth order, compute y(0,2) and y(0,4) for $10y' = x^2 + y^2$, y(0) = 1, taking h = 0.1. 10
 - (b) By means of Lagrange's formula, prove that:

$$y_1 = y_3 - 0.3 \big(y_5 - y_{-3}\big) + 0.2 \big(y_{-3} - y_{-5}\big)$$
 where $y_i = y(i)$.

- 5. Write short notes on any *four* from the following: $4\times5=20$
 - (a) Exponential Random Variables
 - (b) Chi-square Distribution
 - (c) Acceptance-Rejection method
 - (d) Goodness of fit
 - (e) Uniform Random Number Generators

$$\times \times \times \times \times$$