M. SC. (MATHEMATICS WITH APPLICATIONS TO COMPUTER

SCIENCE) [M. SC. (MACS)]

Term-End Examination

June, 2025

MMT-002: LINEAR ALGEBRA

Time: $1\frac{1}{2}$ Hours Maximum Marks: 25

Note: (i) Question No. 5 is compulsory.

- (ii) Do any three questions from Q. Nos.1 Q. 4.
- (iii) Use of calculator is not allowed.

1. (a) Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation defined by :

$$T(x, y, z) = (x + y - z, x + y + 3z)$$

Find the matrix of T relative to the ordered bases $\{(1, 1, 1), (1, 1, 0), (1, 0, 1)\}$ of \mathbb{R}^3 and $\{(1, 1), (0, 1)\}$ of \mathbb{R}^2 .

- (b) Find the quadratic polynomial that best fits the data (-2, -4), (-1, -4), $\left(1, \frac{11}{5}\right)$ and (2, 8).
- 2. Let:

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}.$$

Find a matrix P such that P⁻¹ AP is in block diagonal form.

3. Find the singular value decomposition of A, where:

$$A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}.$$

4. (a) Prove that if N is a non-zero nilpotent operator, then N is not diagonalisable.

2

(b) Check whether or not $A = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ -1 & -1 & 5 \end{bmatrix}$

is unitarity diagonalisable. If it is, find a unitary matrix U such that U* AU is diagonal. If A is not unitarily diagonalisable, obtain the Schur decomposition of A.

- 5. Which of the following statements are true and which are false? Justify your answers with a short proof or a counter-example, whichever is appropriate:
 - (i) If two matrices have the same characteristic polynomial, they are similar.
 - (ii) An invertible matrix must be positive definite.
 - (iii) A and AA^t have the same rank for any matrix A.

- (iv) For every matrix $S \in M_n(\mathbf{R})$, there is an $n \times n$ orthogonal matrix O such that $O'SO \in M_n(\mathbf{R})$ is upper triangular.
- (v) Any non-zero square matrix over **R** has positive spectral radius.

