M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

[M. SC. (MACS)]

Term-End Examination June, 2025

MMT-005: COMPLEX ANALYSIS

Time: $1\frac{1}{2}$ Hours Maximum Marks: 25

Note: (i) Question No. 1 is compulsory.

- (ii) Attempt any **three** questions from Question Nos. 2 to 5.
- (iii) Use of calculator is not allowed.

- 1. State, giving reasons whether the following statements are true or false : $5\times2=10$
 - (a) The principal argument of the complex $\operatorname{number} -1 i \text{ is } \frac{5\pi}{4}.$
 - (b) The function $f(z) = z \overline{z}$ is differentiable at z = 0.
 - (c) The identity:

$$\log(z_1 \cdot z_2) = \log z_1 + \log z_2$$

holds for every pair of complex numbers z_1 and z_2 .

- (d) $\int_{C_1} \frac{1}{z^2 + 4} dz = \int_{C_2} \frac{1}{z^2 + 4} dz$, where C_1 and C_2 denote positive oriented circles |z| = 3 and |z| = 4 respectively.
- (e) The function $f(z) = z^2 + 2z$ is conformal everywhere.

3

2. (a) Prove that the function:

$$u(x,y) = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$$

is harmonic. Find its harmonic conjugate.

(b) Find the singular points and their nature for the function: 2

$$f(z) = \frac{1}{z^6} \left(z - \frac{z^3}{3!} - \sin z \right)$$

3. (a) Find the real and imaginary parts of the function:

$$f(z) = e^{z^2}$$

(b) (i) Find the fixed points of the bilinear transformation: $1\frac{1}{2}$

$$w(z) = \frac{-2 + (2 + i)z}{i + z}$$

- (ii) Prove that, if the sequence (z_n) converges to z, then the sequence (\bar{z}_n) converges to \bar{z} . $1\frac{1}{2}$
- 4. (a) Find the Laurent's series expansion in powers of z for the function:

$$f(z) = \frac{1}{z^2 - z - 2}$$

in the region 1 < |z| < 2. Also write its principal part at z = 0.

(b) Without evaluating the integral, show that:

$$\left| \int_{\mathcal{C}} \frac{dz}{z^2 + 1} \right| \le \frac{3\pi}{16}$$

where C is the arc of circle |z|=3 from z=3 to z=3i.

5. (a) Use Cauchy Residue theorem to evaluate:

$$\int_0^{2\pi} \frac{d\theta}{1 + a\cos\theta}, \quad a^2 < 1$$

(b) Find the radius of convergence of the power series:

$$\sum_{n=1}^{\infty} \left[3 + (-1)^n \right]^n z^n$$