M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. SC. (MACS)] Term-End Examination June, 2025

MMT-006: FUNCTIONAL ANALYSIS

Time: 2 Hours Maximum Marks: 50

Weightage: 70%

Note: (i) Question No. 1 is compulsory.

- (ii) Answer any **four** questions from the remaining questions.
- 1. State, with justification, whether each of the following statements is true or false : $5\times2=10$
 - (a) $[-2, 2] \times [-2, 2]$ is the unit ball for some norm on \mathbb{R}^2 .

- (b) If M is a proper subspace of a Hilbert space H, then $M^{\perp} \neq (0)$.
- (c) Every non-zero linear functional on a normed space is an open map.
- (d) The dual of a separable normed space is separable.
- (e) For a non-zero compact operator, 0 is never an eigen value.
- 2. (a) State the Schwarz inequality and find conditions for equality to hold. 1+3=4
 - (b) Prove the completeness of the space $(l^1, \|.\|_1)$.
 - (c) If $\{A_n\}$ is a sequence of bounded linear operators on a Banach space X and if $A_n x \to Ax \, \forall \, x \in X$, show that A is linear and continuous.
- 3. (a) Show that the canonical map $J: X \to X''$ for a normed space X is a

linear isometry. Give an example, where it is not onto. 2+2=4

- (b) A is a bounded linear operator on a Hilbert space H. If A is unitary, then for every orthonormal basis {u_i} of H, {Au_i} and {A*u_i} are both orthonormal bases for H.
- (c) For $f \in C[0,1]$ define $\varphi(f) = \int_0^1 x f(x) dx$, find $\|\varphi\|$ for the norm $\|.\|_{\infty}$ on C[0,1].
- 4. (a) If a Banach space is reflexive, then prove that its dual is reflexive.
 - (b) Let A be a bounded self-adjoint operator on a Hilbert space H. Prove that : 3 $\|A\| = \sup\{|\langle Ax, x \rangle| : \|x\| = 1\}$
 - (c) Show that a linear map T on a Banach space X is closed if and only if the graph G (T) is complete in X × X.

- 5. (a) State the Riesz representation theorem for Hilbert spaces. If f is a bounded linear functional on a Hilbert space H, then show that the representing vector of f is given by $\Sigma \overline{f(e_i)}e_i$, where $\{e_i\}$ is an orthonormal basis. 1+3=4
 - (b) If $\{x_n\}$ is a sequence in a normed space X such that $\{f(x_n)\}$ is convergent for each $f \in X'$, prove that $\{x_n\}$ is bounded.

3

- (c) Let H be a Hilbert space and let $u,v\in H$. Define $Ax=\langle x,u\rangle v$. Calculate $\|A\|$.
- 6. (a) For $A, B \in M(n, \mathbb{R})$, the space of $n \times n$ real matrices, define $\langle A, B \rangle = \operatorname{trace}(AB^t)$. Show that this gives an inner product and find an orthonormal basis. ($B^t = \operatorname{transpose}$ of B).

- (b) Let $\{x_1, \dots, x_n\}$ be a linearly independent set in a normed space X. Prove that there are $f_i \in X'$ such that $f_i(x_j) = \delta_{ij}$.
- (c) Prove that $l^1 \subset l^2$ and find $(l^1)^{\perp}$ in l^2 .

2+1=3

 $\times \times \times \times \times$