No. of Printed Pages: 6

M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M.SC. (MACS)] Term-End Examination

June, 2025

MMTE-001: GRAPH THEORY

Time: 2 Hours Maximum Marks: 50

Note: Question No. 1 is compulsory. Answer any four questions from Q. Nos. 2 to 7.

Symbols have their usual meanings.

- State whether the following statements are true or false. Justify your answers with a short proof or a counter-example: 5×2=10
 - (i) Every tree is a bipartite graph.

- (ii) Q_n is Eulerian for all $n \ge 2$.
- (iii) If G is a triangle-free graph, then $\chi(G) \le 2$.
- (iv) $K_{3,4}$ is non-planar.
- (v) If G has a cut-vertex, then so does L(G).
- 2. (a) Use Whitney's Theorem or ExpansionLemma to show that the followinggraph is 2-connected:

- (b) Check whether the graph given in part(a) is Hamiltonian.
- (c) Find the number of (v₃, v₅)-walks of length 3 in the graph given in part (a) by computing the powers of the adjacency matrix.

- 3. (a) Let G = (V, E) be a connected graph with at least two vertices and degree sequence $(d_1, d_2,...,d_n), d_i \ge 1$ for each i. Then show that G is a tree if and only if $\sum_{i=1}^n d_i = 2(n-1)$, where, n = |V|. 4
 - (b) Use Prim's algorithm on the following graph to find a minimum-weight spanning tree starting at v_1 :

(c)	What	is	the	thickness	of	the	Peterson
	graph? Justify your answer.						2

- 4. (a) If G is a bipartite graph, then prove that $\chi'(G) = \Delta(G)$.
 - (b) Show that every proper subgraph of K_5 is planar.
- 5. (a) Show that every k-regular bipartite graph has a perfect matching, where $k \ge 1$.
 - (b) Let G be a connected graph and $v \in V(G)$. Show that v is a cut-vertex of G iff there exist vertices $u, w \in V(G)/\{v\}$ such that every (u, w)-path in G passes through v.
- 6. (a) Start with the cycle $C = (v_1, v_2, v_3, v_5, v_4, v_1)$ in the following weighted complete

graph K_5 , and perform one reduction step to get a Hamiltonian cycle with smaller weight:

- (b) Show that $K_{3,3}$ is a contraction of the Grötzsch graph. Hence conclude that Grötzsch graph is non-planar.
- 7. (a) Determine the minimum size of a maximal matching in C_n . Also determine the size of a maximum matching in C_n . Are the two quantities equal?

(b) The blocks of a tree are precisely its edges. (True or false)

Justify. 2

(c) Define a flow on the following network with maximum possible value: 5

