M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. SC. (MACS)]

Term-End Examination

June, 2025

MMTE-002 : DESIGN AND ANALYSIS OF ALGORITHMS

Time: 2 Hours Maximum Marks: 50

Note: Attempt any four questions from question nos. 1 to 6. Question No. 7 is compulsory.

1. (a) Sort the following numbers using the merge sort algorithm, showing all the steps you use in the process:5

15, 32, 88, 70, 60, 23, 78, 25, 42, 37

(b) Construct a (2, 4) B-tree by inserting the following numbers in the order given.Show all the steps you have used in the process:

2. (a) Construct a Huffman code for the following data, showing all the steps: 5

Character	A	В	С	D	E
Probability	0.4	0.1	0.2	0.15	0.15

(b) Find the minimum spanning tree of the following graph using Prim's algorithm,explaining all the steps:

- 3. (a) Find the longest common subsequence of the sequences X = < B, C, D, C, E, B, C > and Y = < C, E, D, B, C, B > using dynamic programming, showing all the steps.
 - (b) Using Dijkstra's algorithm, find the distances of all the vertices from 'a', in the weighted graph given below:

4. (a) Show the steps in the dynamic programming algorithm find tooptimal parenthesization of a matrixchain product whose sequence of dimensions is as follows: 5

Matrix	Dimension
A ₁	5 × 10
A_2	10×3
A_3	3×12
A_4	12×5

- (b) Give examples of the following: $2.5 \times 2=5$
 - (i) A problem for which the dynamic programming technique outperforms Greedy approach.
 - (ii) A problem for which Greedy approach outperforms dynamic programming technique.
- 5. (a) Write the pseudo code for Bubble sort.Derive its running time.5
 - (b) Write an algorithm to delete an internal node from a binary search tree. 5
- 6. (a) Find a general solution to the recurrence $a_n = 3a_{n-1} 4a_{n-3}, n \ge 1$. Find the solution, given the initial conditions $a_1 = 1, a_2 = 1, a_3 = 1$.

(b) Consider the given orders of a binary tree:

Postorder: D, H, E, B, F, G, C, A

Preorder: A, B, D, E, H, C, F, G

Construct the equivalent binary tree.

Demonstrate all the steps involved. 4

7. Which of the following statements are true and which are false? Justify your answer with a short proof or a counter-example:

 $5 \times 2 = 10$

- (a) The worst case running time for the quick sort algorithm is $O(n \log n)$.
- (b) The min-heap is a binary search tree.
- (c) The minimum spanning tree of any graph is unique.
- (d) $n! = O(n^n)$
- (e) Every NP-complete problem is also a NP-hard problem.

 $\times \times \times \times \times$