M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. SC. (MACS)]

Term-End Examination

June, 2025

MMTE-003 : PATTERN RECOGNITION AND IMAGE PROCESSING

Time: 2 Hours Maximum Marks: 50

Note: (i) Question No. 7 is compulsory.

- (ii) Attempt any four questions from question nos. 1 to 6.
- (iii) Use of calculator is not allowed.

5

- (a) Define quantization in the process of digitization of image. Compute the physical size of a 2-D image with dimensions 2400 × 2400, when scanned at 300 dpi.
 - (b) Perform multiplication and division operations on the following two images:

$$I_1 = \begin{bmatrix} 1 & 3 & 7 \\ 5 & 15 & 75 \\ 200 & 50 & 150 \end{bmatrix}$$

and
$$I_2 = \begin{bmatrix} 50 & 150 & 125 \\ 45 & 55 & 155 \\ 200 & 50 & 75 \end{bmatrix}$$

- 2. (a) Perform the following:
 - (i) Apply Discrete Cosine Transform(DCT) to the following image (I): 3

$$I = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

(ii) Determine DC component of the following image (f): 2

$$f = \begin{bmatrix} 1 & 3 & 4 \\ 5 & 6 & 7 \\ 8 & 9 & 11 \end{bmatrix}$$

- (b) Calculate the following for the data given below: 5
 - (i) Entropy
 - (ii) Coding redundancy of Binary code
 - (iii) Coding redundancy of Huffman code

Symbol	Huffman Code	Binary Code	Probability
1	0	000	0.4
2	10	001	0.2
3	110	010	0.2
4	1110	011	0.1
5	11110	100	0.05
6	111111	101	0.05

[Given: $\log_{20.05} = -4.32$].

3.	(a)	Write short notes on the following
		colour models:
		(i) RGB
		(ii) CMY
		(iii) HSI
	(b)	What is histogram specification? How
		is it different from histogram
		equalization?
4.	(a)	What do you understand by the term
		'Image smoothing' ? How do the linear
		spatial filters differ from non-linear
		spatial filters?
	(b)	Explain the process of filtering in the
		frequency domain, with the help of a
		suitable block diagram. 5
5.	(a)	Compare image enhancement with
		image restoration. 4

- (b) Write short notes on the following: 6
 - (i) Gaussian Noise
 - (ii) Rayleigh Noise
 - (iii) Salt and Pepper Noise
- 6. (a) Differentiate between the following: 5
 - (i) Clustering and Classification
 - (ii) Agglomerative Clustering methods and Divisive Clustering methods
 - (b) Perform partition clustering using Frogy's method for the data given below with k = 2 (two clusters). Use first two sample points of the given data i.e., (4, 4) and (8, 4) as seed points: 5

x	y
4	4
8	4
15	8
24	4
24	12

- 7. Which of the following statements are true and which are false? Give a short proof or a counter-example in support of your answer:
 - (i) If each RGB is an 8 bit image, then the total number of different shades of grey is 256.
 - (ii) The thresholding on image segment

$$\begin{bmatrix} 0 & 10 & 50 \\ 5 & 95 & 150 \\ 110 & 150 & 190 \end{bmatrix}$$
 with $t = 128$ is

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 255 \\ 0 & 255 & 255 \end{bmatrix}.$$

(iii) An image is the addition of illumination and reflectance components.

- (iv) If the dimension of an image is 5 × 8 inches and the frequency is 500 dots per inch in each direction, then the number of samples required to preserve the information in the image is 2500 dots.
- (v) A high contrast image has a narrow range of grey levels in its histogram.

