M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

[M. SC. (MACS)]

Term-End Examination June, 2025

MMTE-005: CODING THEORY

Time: 2 Hours Maximum Marks: 50

- **Note:** (i) There are six questions in this paper.
 - (ii) The **sixth** question is compulsory.
 - (iii) Do any four questions from question nos. 1 to 5.
 - (iv) Show all the relevant steps. Do the rough work at the bottom or at the side of the page only.
 - (v) Calculators are **not** allowed.
- (a) Define the minimum distance of a code.
 What is the minimum distance of the
 following binary linear code?
 3

 $\mathbf{C} = \{0000, 1101, 1000, 0101,$

1011, 0110, 0011, 1110}

(b) Define the generator matrix of a linear code. Check whether:

$$G = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

is a generator matrix of the [4, 3] binary code:

(c) Check that the codes \mathbf{c}_1 and \mathbf{c}_2 with generator matrices:

$$G_1 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

and

$$\mathbf{G}_2 = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

respectively, are permutation equivalent. Find the a permutation matrix P such that $G_1P=G_2$.

2. (a) Define the dual of a code. Check whether the linear code \boldsymbol{c}_1 and \boldsymbol{c}_2 with generator matrices :

$$G_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

and
$$G_2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

are duals of each other.

3

- (b) Let $n \in \mathbb{N}$, q be a power of a prime and $0 \le s < n$. Define the q-cyclotomic coset of s modulo n. Find the 3-cyclotomic set of 1 modulo 23.
- (c) Let c be a [7, 4] binary cyclic code with generator polynomial $x^3 + x^2 + 1$. Find the generator matrix and the parity check matrix of the code.

3. (a) Construct the Tanner graph for the given parity check matrix H of an LDPC code:

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

(b) Find the weight distribution of the binary linear code with generator matrix:

$$\begin{bmatrix}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}$$

Use MacWilliams equations to find the weight distribution of the dual code: 7

i	α^i
1	α
2	$lpha^2$
3	$\alpha + 2$
4	$\alpha^2 + 2\alpha$
5	$2\alpha^2 + \alpha + 2$
6	$\alpha^2 + \alpha + 1$

7	$\alpha^2 + 2\alpha + 2$
8	$2\alpha^2 + 2$
9	$\alpha+1$
10	$\alpha^2 + \alpha$
11	$\alpha^2 + \alpha + 2$
12	$\alpha^2 + 2$
13	2
14	2α
15	$2lpha^2$
16	$2\alpha + 1$
17	$2\alpha^2 + \alpha$
18	$\alpha^2 + 2\alpha + 1$
19	$2\alpha^2 + 2\alpha + 2$
20	$2\alpha^2 + \alpha + 1$
21	$\alpha^2 + 1$
22	$2\alpha + 2$
23	$2\alpha^2 + 2a$
24	$2\alpha^2 + 2\alpha + 1$
25	$2\alpha^2 + i$

Table 1 : Powers of $\alpha \in F_{27}$, where :

$$\alpha^3 + 2\alpha + 1 = 0$$

4. (a) Let \mathbf{c}_1 be the [4, 3] binary linear code generated by :

$$\begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix}$$

and let c_2 be the [4, 1]-binary linear code generated by [1001]. Let c be the code obtained through using $(\mathbf{u} \mid \mathbf{u} + \mathbf{v})$ construction on the codes c_1 and c_2 . Find the generator matrix of c. What are length and dimensions of the code?

- (b) Find the g.c.d. of $x^5 x^4 + x + 1$ and $x^3 + x$ in \mathbf{F}_5 .
- (c) Show that the \mathbb{Z}_4 -linear codes with generation matrices: 5

$$\mathbf{G}_1 = \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 2 & 2 \end{bmatrix}$$

and

$$\mathbf{G}_2 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{bmatrix}$$

are monomially equivalent.

- 5. (a) Construct a [13, 10] BCH code over \mathbf{F}_3 with designed distance 2. Use $x^3 + 2x + 1 \in \mathbf{F}_3[x]$ as the primitive polynomial and Table 1.
 - (b) Draw the Trellis diagram, for six cycles, for the convolutional code with generator matrix:

$$G = [1 + D 1 + D^2]$$

6. Which of the following statements are true and which are false? Justify your answer with short proof or a counter-example:

$$2 \times 5 = 10$$

(a) The code over \mathbf{F}_3 with generator matrix:

$$G = \begin{bmatrix} 1 & 2 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 & 1 \end{bmatrix}$$

is self-orthogonal.

- (b) Every cyclic code is self dual.
- (c) $x^3 + x 1$ is irreducible over \mathbf{F}_5 .
- (d) There are two different codes with the same generator matrix.
- (e) The number of 3-cyclotomic cosets modulo 26 is 3.

$$\times \times \times \times \times$$