M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. SC. (MACS)]

Term-End Examination

June, 2025

MMTE-007 : SOFT COMPUTING AND ITS APPLICATIONS

Time: 2 Hours Maximum Marks: 50

Weightage: 50%

Note: (i) Question No. 7 is compulsory.

- (ii) Attempt any four questions from question nos. 1 to 6.
- (iii) Use of scientific (non-programmable) calculator is allowed.
- (iv) All symbols have their usual meanings.

1. (a) Find the α -cut at 0.7 and 0.2 for the fuzzy set (A) given below : 3

$$A = \left\{ \frac{0}{10}, \frac{0}{20}, \frac{0.2}{30}, \frac{0.8}{40}, \frac{1.0}{50}, \right.$$

$$\frac{1.0}{60}, \frac{0.6}{70}, \frac{0.2}{80}, \frac{0}{90}, \frac{0}{100}$$

Compare the results of the α -cut of the set A for values 0.7 and 0.2. Give comments for the status of α -value variation.

(b) Describe McCulloch-Pitts neuron, and implement NAND function using McCullah-Pitts neuron for the binary data given below:

Input		
x_1	x_2	
0	0	
0	1	
1	0	
1	1	

2. (a) Write Fuzzy C-mean algorithm. Apply it and perform *one* iteration to find the new cluster centre for the data given below:

	x_1	x_2	x_3	x_4
f_1	1	2	3	4
f_2	10	8	6	5

Assume the values of parameters c and m as 2 and the initial cluster centres V_1 as (3, 3) and V_2 as (5, 5).

- (b) List all the schemas for the 5-bit chromosome '100**'. Also, find length and order of the schema.
- 3. (a) Use Genetic algorithm to maximize $f(x) = \frac{-x^2}{10} + 3x, \text{ where } 0 \le x \le 31.$
 - (b) Describe Hopfield network. Give two major limitations of Hopfield network. Under what conditions, a Hopfield model of 'N' nodes can achieve 100% correct retrieval of 'P' patterns?

4. (a) Write Roulette-wheel criterion and use it to generate the population in the next iteration, for the data given below: 6

k	$\mathbf{F}_{m{k}}$	
1	3.5	
2	4.6	
3	5	
4	2.8	
5	1.8	

(b) Consider the Travelling Salesman problem (involving 10 cities) given below:

Parent-1	Parent-2
A	G
В	J
C	Н
D	E
E	F
F	D
G	В
Н	I
I	C
J	A

Find the children solution using: 4

- (i) Order crossover #1 with key positions 3 and 6.
- (ii) Order crossover #2 with key positions 2, 4, 7, 8.
- 5. (a) Given the input, weight and bias to a single-input neuron as 2.0, 2.3 and 3, respectively, then determine the following:
 - (i) The net input to the transfer function
 - (ii) The neuron output for the following transfer functions:
 - (I) Log-sigmoid
 - (II) Hard limit
 - (III) Linear
 - (b) Explain the MADALINE architecture with a suitable diagram. Also, compare MADALINE with ADALINE.6
- 6. Write short notes on the following:

 $2.5 \times 4 = 10$

(i) Kohonen Self-Organizing feature map

- (ii) Hedges
- (iii) Multivalued Recognition Systems
- (iv) XOR Problem
- 7. State whether the following statements are True *or* False. Give reasons for your answers:
 - (a) Every original pattern of a discrete Hopfield network with a synchronous update provides a global minimum.
 - (b) If R is a fuzzy relation between the fuzzy sets A and B, then membership function of $R(\mu_R)$ is:

$$\mu_{\rm R}(x,\,y) = \max\left(\mu_{\rm A}(x),\,\mu_{\rm B}(y)\right)$$

- (c) Self-Organizing Map (SOM) is an unsupervised learning technique.
- (d) The offsprings of parents with a high fitness value, have a high fitness value for any fitness function.
- (e) If $\omega(k_0) = \omega(k_0 + 1) = \omega(k_0 + 2)$, then perceptron is non-linearly separable.

$$\times \times \times \times \times$$