MPH-001

No. of Printed Pages: 5

M. SC. (PHYSICS)

(MSCPH)

Term-End Examination

June, 2025

MPH-001 : MATHEMATICAL METHODS IN PHYSICS

Time: 2 Hours Maximum Marks: 50

Note: (i) Answer any five questions.

- (ii) The marks are indicated against each question.
- (iii) Symbols have their usual meanings.
- (iv) You may use calculator.

Using the generating function for Legendre polynomials and their orthogonality property, show that:

$$\int_{-1}^{+1} \left[P_n(x) \right]^2 dx = \frac{2}{2n+1}$$

2. (a) Write the Laplace's equation in spherical coordinates (r, θ, ϕ) . Solve the following ODE:

$$r^2 \frac{d^2 \mathbf{R}}{dr^2} + 2r \frac{d \mathbf{R}}{dr} - n^2 \mathbf{R} = 0$$

3. (a) When is a set of vectors called linearly independent? Show that the vectors:

$$\vec{u} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \text{ and } \vec{v} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

in the Cartesian space are linearly independent. 2+3

(b) For the Pauli matrix:

5

$$\sigma_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

calculate:

$$u_1(\theta) = \exp(i\theta\sigma_2) = 1 + i\theta\sigma_2 - \frac{\theta^2}{2!}\sigma_2^2 - \dots$$

For real θ , show that :

$$u_1(\theta) = \cos \theta_1 + i \sin \theta \, \sigma_2$$

- 4. (a) (i) Show that $a_i = g_{ij} v^j$ transforms covariantly, where g_{ij} are the components of the metric tensor of rank 2 and v^i the components of a contravariant vector.
 - (ii) Show that the determinant of an orthogonal matrix is either +1or −1.

(b) Show that:

$$u = 2x(1-y)$$

is harmonic in some domain. Calculate its harmonic conjugate V. 2+3

5. (a) Using the method of residues, evaluate the integral:

$$\int_0^{\pi} \frac{d\theta}{1+\sin^2\theta}$$

(b) Obtain the Taylor's series expansion of: 5 $f(z) = \frac{1}{z-1} \text{ about } z = -1 \text{ and } z = i.$

- 6. (a) Prove that the series $\sum_{n=1}^{\infty} \frac{z^{n-1}}{3^n}$ converges for |z| < 3.
 - (b) Using the Laplace transforms, solve the initial value problem:

$$y'' - 4y' + 3y = 0;$$
$$y(0) = 3,$$

$$y'(0) = 7.$$

7. Determine the Fourier transform of the normalised Gaussian distribution:

$$f(t) = \frac{1}{\sqrt{2\pi}} \frac{1}{\tau} \exp\left(-\frac{t^2}{2\tau^2}\right) - \infty < t < \infty$$

Also draw the diagrams of the Fourier transform of Gaussian distribution for small τ and large τ .

- 8. (a) Define a continuous group giving an example. 5
 - (b) Show that $n \times n$ unitary matrices form a group. 5

$$\times \times \times \times \times$$