No. of Printed Pages: 7

M. SC. (PHYSICS) (MSCPH)

Term-End Examination June, 2025

MPH-004: QUANTUM MECHANICS-I

Time: 2 Hours Maximum Marks: 50

Note: (i) Answer any five questions.

- (ii) Symbols have their usual meanings.
- (iii) Values of physical constants are given at the end.
- (iv) You may use a calculator.
- (v) The marks for each question are indicated against it.
- (a) A particle of mass m is constrained to move in a one-dimensional space between two infinitely high potential

barriers located a distance 2a apart. Using the uncertainty principle, derive the zero-point energy of the particle. 4

(b) Using the relativistic expression for the energy of the electron:

$$E^2 = p^2 c^2 + m^2 c^4,$$

Calculate the phase velocity and group velocities of the electron wave.

- (a) Define a Hermitian operator. Show that
 Hermitian operators have real
 expectation values .
 5
 - (b) The wave function of a particle of mass m is given by : 5

$$\psi(x,t) = N \exp\left(-\frac{\alpha m}{\hbar}x^2 - i\alpha t\right)$$

where α and N are constants. Use the Schrödinger equation to determine the potential V(x) in which the particle is moving.

3. Solve the Schrödinger equation for the following symmetric infinite potential well:

$$V(x) = \begin{cases} \infty, & \text{for } x < -L \\ 0, & \text{for } -L \le x \le L \\ \infty, & \text{for } x > L \end{cases}$$

Determine the eigen functions and eigen energies. What is the parity of ground state and first excited state?

4+4+2

4. Calculate the mean potential and kinetic energy of the ground state of the simple harmonic oscillator defined by the wave function:

6+4

$$\psi_0(x) = \left(\frac{a}{\sqrt{\pi}}\right)^{1/2} \exp\left(-\frac{a^2 x^2}{2}\right)$$

where $a^2 = \frac{m\omega}{\hbar}$. Given that

$$\int_{-\infty}^{\infty} x^2 e^{-ax^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{a^3}} .$$

- the 5. stationary state Schrödinger equation in spherical polar coordinates for the symmetric rigid rotator which has the classical Hamiltonian $H = \frac{L^2}{2I_0}$, where $\stackrel{\rightarrow}{L}$ is momentum and I_0 is the angular the moment of inertia. Deduce the form of the wave function ψ (r, θ , ϕ) and obtain the energy eigen functions and energy eigen values. What is the degeneracy of each energy eigen value? 2+6+2
- 6. (a) The state of a system at time t=0 is $|\psi(0)\rangle = \frac{1}{\sqrt{2}} (|1\rangle + |2\rangle)$, where $|1\rangle$ and $|2\rangle$ are the normalized energy eigen kets of the system corresponding to the energy eigen values E_1 and E_2 respectively $(E_2 > E_1)$. Calculate the shortest time in which the state vector $|\psi(t)\rangle$ will be orthogonal to $|\psi(0)\rangle$.

(b) Define the projection operator for a quantum system. Write the identity operator in terms of the projection operator and hence show that in a complete orthonormal basis $(|\phi_1\rangle, |\phi_2\rangle, ..., |\phi_n\rangle)$ an operator \hat{O} can be written as:

$$\hat{\mathbf{O}} = \sum_{i=1}^{n} \sum_{i=1}^{n} \mathbf{O}_{ij} \left| \phi_i \right\rangle \left\langle \phi_j \right|$$

- 7. (a) Define the ladder operators \hat{a} and \hat{a}^+ for the simple harmonic oscillator and show that $\left[\hat{a},\hat{a}^+\right]=1$.
 - (b) Using the expression:

$$\hat{\mathbf{H}} = \hbar\omega \left(\hat{a}\hat{a}^{+} + \frac{1}{2} \right)$$

show that:

$$\hat{H}(\hat{a}|E\rangle) = (E - \hbar\omega)(\hat{a}|E\rangle)$$

where $|E\rangle$ is an energy eigen ket of the simple harmonic oscillator with energy eigen value E.

5

5

5

8. (a) Use the expressions:

$$\begin{split} \left(\mathbf{J}^{2}\right)_{-j'jm_{j'}m_{j}} &= \left\langle j', m_{j'}, \left| \hat{\mathbf{J}}^{2} \right| j, m_{j} \right\rangle \\ &= j(j+1)\hbar^{2}\delta_{ii'}\delta m_{i'}m_{j} \end{split}$$

and

$$\begin{split} (\mathbf{J}_z)_{j'jm_{j'}m_j} &= \left\langle j', m_{j'} \middle| \hat{\mathbf{J}}_z \middle| j, m_j \right\rangle \\ &= m_j \hbar \, \delta_{j'j} \, \delta m_{j'} \, m_j \end{split}$$

to write the angular momentum matrices J^2 and J_z for j = 1.

(b) Using the basis vectors $|\uparrow\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|\downarrow\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ for the spin half system and the Pauli's spin matrix $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$,

$$\hat{\mathbf{S}}_{y} = \frac{i\hbar}{2} \Big[- \Big| \uparrow \Big\rangle \Big\langle \downarrow \Big| + \Big| \downarrow \Big\rangle \Big\langle \uparrow \Big| \Big]$$

show that:

Physical constants:

$$\begin{split} h &= 6.63 \times 10^{-34} \, \mathrm{Js} \\ \hbar &= 1.05 \times 10^{-34} \, \mathrm{Js} \\ m_e &= 9.1 \times 10^{-31} \, \mathrm{kg} \\ e &= 1.6 \times 10^{-19} \, \mathrm{C} \\ &\qquad \qquad \times \times \times \times \times \end{split}$$