M. SC. (PHYSICS) (MSCPH)

Term-End Examination

June, 2025

MPH-006: CLASSICAL MECHANICS-II

Time: 2 Hours Maximum Marks: 50

Note: (i) Attempt any five questions.

- (ii) The marks for each question are indicated against it.
- (iii) Symbols have their usual meanings.
- (iv) You may use a calculator.

1. Consider a particle of mass m with the Lagrangian:

$$L(x,y,z) = \frac{1}{2} m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - V(|\overrightarrow{r} - \overrightarrow{\mu}t|)$$

Show that a transformation $\overrightarrow{r} = \overrightarrow{r} + \varepsilon \overrightarrow{\mu}$ leaves the Lagrangian invariant. Here ε is an infinitesimal parameter.

- 2. State Liouville's theorem. Assuming that a system in two-dimensional phase space obeys Hamiltonian dynamics, show that the volume in the phase space remains constant as the phase points evolve with time.
- 3. (a) Using the conditions $\delta_{q_i} = \delta_{p_i} = 0$ at the end points, show that :

$$\delta \mathbf{S}' = \delta \int_{t_1}^{t_2} \left[p_i \dot{q}_i - \mathbf{H}(q_i; \mathbf{p}_i, t) + \frac{d\mathbf{F}(q_i, p_i, t)}{dt} \right] dt = 0$$

is equivalent to the condition:

$$\delta \mathbf{S} = \delta \int_{t_1}^{t_2} \left[p_i \dot{q}_i - \mathbf{H}(q_i, p_i, t) \right] dt = 0$$

(b) Consider an Atwood's machine consisting of two masses m_1 and m_2 , connected by a string of constant length l_0 . The Lagrangian of the system is:

$$L = \frac{1}{2}(m_1 + m_2)\dot{y}_1^2 + (m_1 - m_2)gy_1 + m_2gl_0$$

Obtain the Hamiltonian and Hamilton's equation of motion. 3+2

- 4. (a) Write the condition for extended canonical transformation in symplectic form.
 - (b) Using symplectic approach, show whether the transformation: 7

$$Q = \alpha^2 q$$
 and $P = \beta^2 p$

is canonical. Here α and β are non-zero constants.

- (c) Using Poisson brackets, obtain the relation for α and β , and hence the value of the scale parameter.
- (a) Write the bilinear invariant conditionfor canonical transformation.
 - (b) Consider a dynamical system described by the Hamiltonian: 4+4

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 q^2$$

where ω is some constant.

- (i) Obtain the new Hamiltonian K (Q, P), using the generating $\text{function } \text{F}_1(q, \text{Q}) = -\frac{\text{Q}}{q}.$
- (ii) Obtain Hamilton's equations of motion in the new variables.

6. A particle of mass m, charge e in an EM field is described by the Lagrangian :

$$L(\overrightarrow{r}, \overrightarrow{r}) = \frac{1}{2}m\overrightarrow{r}^2 + e(\overrightarrow{r}.\overrightarrow{A}) - e\phi$$

where ϕ and \overrightarrow{A} are the scalar and the vector potentials.

- (i) Determine the canonical momenta. 2
- (ii) Obtain the Hamiltonian for the system.

4

(iii) Show that:

$$[\overrightarrow{r}, \mathbf{H}] = \overrightarrow{r}$$

7. The Hamiltonian of a particle with mass m moving in a central force field is : 8+2

$$\mathbf{H} = \frac{1}{2m} \left(p_r^2 + \frac{p_\theta^2}{r^2} \right) - \frac{k}{r}$$

where k is a constant.

Obtain Hamilton's characteristic function W (r, θ) and the action-angle variables J_{θ} .

- 8. (a) Starting from $\frac{d\vec{L}}{dt} + \overset{\rightarrow}{\omega} \times \vec{L} = \vec{N}$, derive the Euler's equations for a rigid body in body axis for $\vec{L} = \omega_1 \hat{x} + \omega_2 \hat{y} + \omega_3 \hat{z}$. Here \vec{L} is the angular momentum, \vec{N} is the torque, and $\overset{\rightarrow}{\omega}$ is the angular velocity. 7
 - (b) Write Euler's equations for torque free motion.

