MASTER'S DEGREE PROGRAMME IN PHYSICS (MSCPH)

Term-End Examination June, 2025

MPH-008: QUANTUM MECHANICS—II

Time: 2 Hours Maximum Marks: 50

Note: (i) Answer any five questions.

- (ii) Symbols have their usual meanings.
- (iii) You may use a calculator.
- (iv) The marks for each question are indicated against it.
- 1. (a) Write the rotation operator for an infinitesimal rotation ϕ_x about the x-axis. Show that the rotation operators for finite rotations are unitary. 5
 - (b) Define a parity transformation. Show that for the parity operator $\hat{\pi}$: 5

$$\hat{\pi}|x\rangle = |-x\rangle$$

- 2. Consider two non-interacting particles confined to a one-dimensional box of length a. Write the eigen functions and calculate the eigen energies of the ground state and first excited state of the system if the particles are:
 - (i) distinguishable
 - (ii) identical bosons.

Note that for a particle of mass m in a onedimensional box of length a, the eigen functions and corresponding eigen energies are: 5+5

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}; \ E_n = \frac{\hbar^2 \pi^2 h^2}{2ma^2}$$

3. Consider the total angular momentum operator \hat{J} for the addition of two angular momenta represented by the operators \hat{J}_1 and \hat{J}_2 . Show that : 4+2+4

(i)
$$\left[\hat{\mathbf{J}}^2, \hat{\mathbf{J}}_1^2\right] = 0$$

(ii)
$$\left[\hat{\mathbf{J}}_{x},\hat{\mathbf{J}}_{y}\right] = i\hbar\hat{\mathbf{J}}_{z}$$

(iii)
$$\left[\hat{\mathbf{J}}^{2},\hat{\mathbf{J}}_{1z}\right]\neq0$$

4. The ground state eigen function for a particle in a one-dimensional infinite potential well defined by the potential function:

$$V(x) = \begin{cases} 0, & \text{for } -a \le x \le a \\ \infty, & \text{elsewhere} \end{cases}$$

is
$$\psi_1(x) = \frac{1}{\sqrt{a}} \cos\left(\frac{\pi x}{2a}\right)$$
.

Calculate the first order correction to the energy for a perturbation:

$$H_1(x) = u_0 \cos\left(\frac{\pi x}{2a}\right)$$
 for $-a \le x \le a$

where u_0 is a constant.

10

5. Determine the upper bound to the ground state energy for a potential function $V(x) = -u \delta(x)$ using a trial wave function

$$\psi(x) = \operatorname{N} \exp\left(-\alpha x^2\right)$$
. Use $\int_{-\infty}^{\infty} e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{a}}$.

10

- 6. (a) Explain the adiabatic and sudden approximations in the context of a time-dependent Hamiltonian in quantum mechanics.
 - (b) A particle of mass m is in the ground state of a simple harmonic oscillator with a spring constant $k = m\omega^2$. At t = 0, the spring constant changes suddenly to k' = 4k. Calculate the probability that the oscillator stays in the ground state, using the sudden approximation. Before the change in the spring constant, the ground state wave function is:

$$\psi_0(x) = \left(\frac{a}{\sqrt{\pi}}\right)^{\frac{1}{2}} \exp\left(-\frac{a^2 x^2}{2}\right)$$

where $a^2 = \frac{m\omega}{\hbar}$. You may use the following integral :

$$\int_{-\infty}^{\infty} e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}} .$$

2+5+3

- 7. Write the Klein-Gordon equation. Show that $\psi(x,t) = Ne^{i(kx-\omega t)}$ is a solution to the Klein-Gordon equation is $\omega = \sqrt{k^2c^2 + \left(m^2c^4/\hbar^2\right)}$.

 Does the conventional probability interpretation of the wave function work with the
- 8. Describe the first Born approximation. For the potential $V(\vec{r}) = \Sigma_i U a^3 \delta(\vec{r} \vec{r_i})$, where U

Klein-Gordon equation? Explain.

is constant and $\overrightarrow{r_i}$ are the position vectors of the vertices of a cube centred at the origin. Calculate the total scattering cross-section in the low energy limit.

$$\times \times \times \times \times$$