No. of Printed Pages: 7

M. SC. (PHYSICS) (MSCPH)

Term-End Examination

June, 2025

MPH-016: ATOMIC AND MOLECULAR PHYSICS

Time: 2 Hours Maximum Marks: 50

Note: Attempt any five questions. Marks are indicated against each question. You may use a calculator. Symbols have their usual meanings. The values of physical constants are given at the end.

(a) Write any two properties of a Hermitian operator.

- (b) Determine the speed of electron in the second Bohr orbit for Z=3 and compare it with the speed of light.
- (c) Consider a plane wave defined as:

$$\psi_k(x) = \frac{1}{\sqrt{2\pi}} e^{ikx}$$

Prove the orthonormality condition: 5

$$\int \psi_k(x) \, \psi_k^*(x') \, dk = \delta(x - x')$$

- 2. (a) Write down the selection rules under dipole approximation in atomic spectroscopy for the quantum numbers l and m.
 - (b) Determine the shift in energy (ΔE_3) due to Darwin term for n=3 level of hydrogen atom.

- is the origin of hyperfine (c) structure in hydrogen atom? Write down the expression for ΔE_{hfs} in terms of C, \vec{F} , \vec{I} , \vec{J} , where \vec{I} is the total angular momentum of the nucleus, \vec{J} is the total angular momentum of the electron, \overrightarrow{F} is the total angular momentum of the atom and C is the strength of coupling between \hat{I} and \hat{J} . What are the possible values of quantum number F for $J = \frac{5}{2}$ and $I = \frac{1}{2}$? 5
- 3. (a) Write the ground state electronic configuration for carbon atom. Determine the term symbols for $2p^2$ configuration and identify the term symbol for the ground state using Hund's rule.

- (b) Derive the expression for the unperturbed energies when the external magnetic field is much greater than the spin-orbit interaction.
- 4. (a) Obtain the approximate internal energy of a diatomic molecule with $M_N \approx 16 m_p$ and $R_{eq} = 1.21 \text{Å}$. Here m_p is the mass of proton and M_N is mass of nucleus. 6
 - (b) The ground vibrational state dissociation energy of a diatomic molecule is 2.48 eV, and its fundamental vibrational frequency is 559 cm⁻¹. Determine the equilibrium dissociation energy of the molecule. 4
- 5. (a) Write the electronic Hamiltonian for the H_9^+ molecular ion.

- (b) Write the expression for variational integral and hence define Coulomb integral and overlap integral for this system.
- (c) Prove that for the resonance integrals of H_2^+ ion, $H_{ab} = H_{ba}$.
- 6. (a) The fundamental and first overtone absorption transitions of a diatomic molecule are centered at 1285.1 cm⁻¹ and 2551.50 cm⁻¹, respectively. Determine the equilibrium vibrational frequency (ω_e) , the anharmonicity constant (χ_e) and the zero point energy of the molecule.
 - (b) Give *two* differences between Nuclear

 Magnetic Resonance (NMR) and

 Electron Spin Resonance (ESR). 2

- 7. (a) If the bond length of HCl molecule is 1.27 Å, obtain the wave numbers for the first three rotational transitions.
 Given that the atomic masses of H and Cl are 1.008 a.m.u. and 35.45 a.m.u., respectively.
 - (b) If the Stokes line of pure rotational Raman spectrum of H_2 molecule for a transition from $J=1 \rightarrow J=3$ is shifted from the excited radiation by 580 cm^{-1} , determine the bond length of the H_2 molecule.
- 8. (a) Compute the Doppler broadening, at 300 K, for the laser transition in the He-Ne laser which is centered at 632.8 nm. Obtain the ratio between the Doppler width and the natural line width for a lifetime of 30 ns. Assume

that ²⁰Ne is the only isotope present in the Laser. Given that atomic mass of Neon is 20 a.m.u. 8

(b) Give an example each of a gas-phase laser and a solid state laser. 2

Physical Constants:

$$\alpha = \frac{1}{4\pi \in_0} \times \frac{e^2}{\hbar c} \approx \frac{1}{137}$$

$$\hbar = 1.06 \times 10^{-34} \text{Js}$$

$$m_e = 9.10 \times 10^{-31} \text{kg}$$

1 a.m.u. =
$$1.66 \times 10^{-27}$$
 kg

$$1 \text{ cm}^{-1} = 1.2398 \times 10^{-4} \text{ eV}$$

$$k_{\rm B} = 1.3806 \times 10^{-23} \rm J K^{-1}$$

 $\times \times \times \times \times$