No. of Printed Pages: 7

M. SC. (PHYSICS) (MSCPH)

Term-End Examination June, 2025

MPH-017: NUCLEAR AND PARTICLE PHYSICS

Time: 2 Hours Maximum Marks: 50

Note: Answer any five questions. Marks are indicated against each question. You may use a calculator. Symbols have their usual meanings. The values of physical constants are given at the end.

 (a) Obtain the mass defect for ¹⁶₈O and the proton and neutron separation energies.

5

Given:

$$m({}^{16}_{8}\text{O}) = 15.9949 \text{ u}$$

$$m\binom{15}{7}$$
N) = 15.00011u
 $m\binom{15}{8}$ O) = 15.00307u
 $m_p = 1.0078$ u
 $m_n = 1.00866$ u

- (b) A human body contains 0.0250 kg of normal potassium of which 0.012 percent is the radioactive beta emitter potassium-40. The half-life of potassium-40 is 1.3×10⁹ years. Calculate the rate of production of β-particles in the body from the decay of potassium-40.
- 2. (a) For the nuclear charge density $\rho_{ch}(r) = \rho_0 \, e^{-q_0 r} \,, \text{ where } \rho_0 \text{ and } q_0 \text{ are constants, compute the charge form factor and the mean square charge radius $<\!r^2\!>$.} You may use$

$$\Gamma_{n+1}(x) = \int_{0}^{\infty} x^{n} e^{-x} dx = n!$$

- (b) Estimate the nuclear radii for ¹⁵N and ¹¹B from the electron scattering experiment using an electron beam of energy 400 MeV, when the first minimum was observed at 45° and 60°, respectively.
- 3. (a) Explain and justify the observed deviations in magnetic dipole moment and quadrupole moment of deuteron. 5
 - (b) Consider a square well potential:

$$V(r) = \begin{cases} -V_0, & r \le r_0 \\ 0, & r > r_0 \end{cases}$$

Obtain the general form of the wave function of deuteron within the range of potential and outside.

5

4. (a) The scattering cross-section is given as:

$$\sigma_{sc} = \frac{4\pi}{k^2} \sum_{l} (2l+1)\sin^2 \delta_l$$

where k is the wave number and δ_l is the phase shift. Show that the scattering cross-section in zero-energy limit is given by $\sigma = 4\pi a^2$, where a is the Fermi scattering length.

(b) Using the effective range formula, evaluate the total n-p scattering crosssection for a neutron interacting with a free proton in laboratory at 6 MeV. 5

Given:

Scattering lengths:

$$a_t = 5 \,\text{fm}, \, a_s = -21 \,\text{fm},$$

Effective range:

$$r_{ot} = 2 \, \text{fm}, r_{os} = 2.5 \, \text{fm}$$

You may use the mass of the nucleon ${
m M}c^2=938~{
m MeV}\,.$

D-3459/MPH-017

5. (a) Using Bethe-Weizsacker's mass formula, the condition of stability of a nucleus of mass A with Z_0 protons is given by :

$$Z_0 = \frac{A}{2 + 0.015 A^{2/3}}$$

For the value of A = 135, estimate the value of Z_0 . What kind of decay would occur for $Z < Z_0$ and $Z > Z_0$?

- (b) On the basis of semi-empirical mass formula, explain why there are two mass parabolas for even-A nuclei and only one for A-odd nuclei.
- 6. (a) Using the nuclear shell model, obtain the magnetic moment for the ground state of $^{41}_{20}$ Ca and $^{41}_{21}$ Sc nuclei. 6

Given:

$$(g_l)_p = 1; (g_s)_p = +5.58$$

and
$$(g_l)_n = 1; (g_s)_n = -3.82$$

- (b) Explain the process of α and γ decays with one example of each.
- 7. (a) Explain why it was necessary to assign
 a quantum number 'strangeness' to
 particles. What are the selection rules
 for strangeness?
 - (b) What are weak interactions? Assuming that a hypothetical weak interaction has a range of 1 μm, calculate the mass of the particle mediating this interaction (in eV).
- 8. List the quantum numbers B, J, I, I₃, S and Q for the quarks *u*, *d*, *s*. What is the relation connecting Q with I₃, B and S? State the quark content for *p* and *n*. 6+2+2

Physical Constants:

$$1u = 931.5 \text{ MeV}/c^2$$

$$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$$

$$h_c = 6.626 \times 10^{-34} \text{Js}$$

$$h_c = 197 \text{ MeV fm}$$

$$1 \, \text{fm} = 10^{-15} \, \text{m}$$

$$h = 1.054 \times 10^{-34} \, \text{Js}$$

$$c = 3 \times 10^8 \, \text{ms}^{-1}$$

$$\times \times \times \times \times$$