MASTER OF SCIENCE (RENEWABLE ENERGY AND ENVIRONMENT) (MSCRWEE) Term-End Examination June, 2025

MRW-001: ENERGY CONVERSION

Time: 3 Hours Maximum Marks: 70

Note: Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is permitted.

(a) A 4P, Lap wound DC generator is used to run at a speed of 1000 r.p.m. It has flux/pole of 0.02 Wb/m² and 600 conductors. Find the voltage generated by the generator.

	(b)	Explain	the	impor	tance	of 1	non-
		conventio	nal e	energy	sources	s in	the
		context of	f globa	l warmi	ng.		5
2.	(a)	Write a	note o	on Wind	d Electi	ric Po	wer
		Generatii	ng Sys	tem.			5
	(b)	Briefly ex	plain	the diff	usion co	mbus	tion
		process.					5
3.	Exp	olain brie	efly t	he Sol	lar Ph	otovo	ltaic
	Sys	tem with t	he hel	p of suit	table di	agran	ıs.
							10
4.	(a)	Write d	lown	the a	advanta	.ges	and
		disadvan	tages	of pa	ırallel	flow	jet
		condense	r.				5
	(b)	Describe	the t	hermod	lynamic	cycle	e of
		regenerat	tion for	r Steam	Power	Plant	. 5
5.	Wit	h the hel	p of a	ı diagra	am, con	npare	the
	forces acting on impulse and reaction steam						
	turbine blades.						
6.	(a)	State t	he	working	prin	ciple	of
		electrosta	itic pre	ecipitato	or.		5

(b) Discuss belt conveyor used for coal ash

		handling.					
7.	Des	cribe the operation of a four-stroke					
	Dies	sel engine.					
8.	Des	cribe the factors for site selection of					
	hyd	roelectric power plant.					
9.	Wri	Trite short notes on any two of the					
	follo	following: 5+5					
	(a)	Ultimate analysis and proximate					
		analysis of coal					
	(b)	Octane number					
	(c)	Fire tube boilers					
10.	(a)	Determine and compare the combustion					
		equations with oxygen and with air. 5					
	(b)	Explain in brief geothermal power					

5

generation system.

 $\times \times \times \times \times$