POST GRADUATE DIPLOMA IN APPLIED STATISTICS (PGDAST)

Term-End Examination

June, 2025

MST-002: DESCRIPTIVE STATISTICS

Time: 3 Hours Maximum Marks: 50

Note: (i) Question No. 1 is compulsory.

- (ii) Attempt any four questions out of the remaining Question Nos. 2 to 7.
- (iii) Use of scientific (non-programmable) calculator is allowed.
- (iv) Use of Formulae and Statistical Tables Booklet for PGDAST is allowed.
- (v) Symbols have their usual meanings.

- 1. State whether the following statements are True or False. Give reasons in support of your answers: $5\times2=10$
 - (a) If the arithmetic mean of the numbers 8, 3, 2 and 6 with their corresponding frequencies (Y-1), Y, (Y+1) and (Y+2) is 4, then the value of Y is 2.5.
 - (b) If n = 10, $\bar{x} = 4$ and $\sum_{i=1}^{n} x_i^2 = 250$, then coefficient of variation is 75 percent.
 - (c) If X and Y are two variables such that corr (X, Y) = 0, then X and Y are independent.
 - (d) If N = 1000, (A) = 600, (AB) = 480 and (B) = 500, then $(\alpha\beta)$ is 300.
 - (e) Two distributions, with same mean, standard deviation and coefficient of skewness, must have the same peakedness.
- 2. (a) The mean and standard deviation of 20 items are found to be 10 and 4,

respectively. At the time of checking, it was observed that one item 7 was incorrect. Find the mean and standard deviation if it is replaced by 15.

(b) The runs scored by two batsmen in 10 matches are as follows:

Batsman A	Batsman B
25	100
15	0
37	5
43	75
100	50
80	35
106	6
40	125
42	0
16	3

Who is a better run scorer? Also, find which of the two batsmen is more consistent in scoring.

3. (a) Fit a power curve $Y = a^{X^b}$ to the following data (Use log base e): 5

X	Y
5	8
1	10
9	11
4	7
7	6

(b) Given the following frequencies of the positive classes: 5

$$(A) = 975, (AB) = 455, (ABC) = 125,$$

(B) =
$$1187$$
, (AC) = 290 , N = 12000 ,

$$(C) = 585$$
 and $(BC) = 250$.

Find the frequencies of the following classes:

(AB
$$\gamma$$
), (A β C), (α B γ), (α C), (α B γ)

- 4. From the given data in the following table find out:
 - (i) Least square regression equation of X_1 on X_2 and X_3 .

D-3289/MST-002

(ii) Estimate the value of X_1 for $X_2 = 45$ and $X_3 = 8$:

X_1	\mathbf{X}_2	X_3
1	3	4
3	5	5
4	6	6
7	7	9
10	9	11

- 5. (a) Define multiple and partial correlations. From the following data, obtain the correlation coefficient between (i) x_1 and x_3 after removing the linear effect of x_2 on them, and (ii) x_1 and joint effect of x_2 and x_3 : 5
 - $r_{12} = 0.69$, $r_{13} = 0.22$ and $r_{23} = 0.23$
 - (b) Find the correlation coefficient between advertisement expenditure and profit for the following data: 5

Advertisement expenditure	Profit
35	46
40	45
44	50
47	54
35	52
43	65

6. (a) Compute the correlation ratio for the following bivariate data:

x y	47	52	57	62	67
57	4	4	2	0	0
62	4	8	8	1	0
67	0	7	12	1	4
72	0	3	1	8	5
77	0	0	3	5	6

(b) From the following data, calculate
Yule's coefficient of association between
weight of the children and the economic
condition, and interpret it:

4

	Poor	Rich	
	Children	Children	
Below Normal Weight	83	25	
Above Normal Weight	7	57	

7. (a) For the following data on the variable X:

11, 9, 14, 10, 14, 9, 6, 13, 12, 6, 7, 13, 20, 4, 10, 8, 15, 12, 4

find A, B and C such that:

(i)
$$\frac{1}{19} \sum_{i=1}^{19} (x_i - A) = 0$$

(ii)
$$\frac{1}{19} \sum_{i=1}^{19} |x_i - B|$$
 is minimum

(iii)
$$\frac{1}{19} \sum_{i=1}^{19} (x_i - C)^2$$
 is least

(b) Marks of 6 students of a class in Paper I and Paper II of Statistics are given as follows:

Paper I	Paper II
60	62
65	35
76	45
85	85
90	62
106	91

Find:

- (i) both the regression coefficients
- (ii) both the regression lines.

$$\times \times \times \times \times$$